
Chief's Installer Pro for Windows

 Chief's Installer Pro for
Windows

 © 1994, 1995, Dr Abimbola A. Olowofoyeku (the African Chief)

Chief's Installer Pro for Windows is an    AWARD WINNING*** shareware INSTALLER
and UNINSTALLER for Microsoft's Windows 3.1x, and IBM's Win-OS/2. In respect of
Windows 95 this is an "enhanced" version of Chief's Installer Pro (i.e., although it is a
16-bit program, it works correctly under Windows 95, and also Windows NT 3.5,
and Windows NT 3.51).
PC PLUS MAGAZINE GOLD AWARD ***
Registration costs £39.99 (U.K. Sterling) or $59.99 (US dollars). Please refer to the
registration and registration sites sections below, for fuller information.
Please read this documentation and the DISCLAIMER section carefully before    using
the program.

See also;
INTRODUCTION
FEATURES
FOREIGN LANGUAGE SUPPORT
THE INF FILE
RESERVED WORDS
EXISTING FILES
BATCH FILES
BATCH COMMANDS
THE UNINSTALLER
COMMAND LINE OPERATION
REGISTRATION
REGISTRATION SITES
REGISTRATION FORM
DISCLAIMER
CREDITS
FEEDBACK
UPDATES
TECHNICAL SUPPORT

INTRODUCTION
Chief's Installer Pro (enhanced for Windows 95) is a program for the SETUP,
INSTALLATION, and "unINSTALLATION" of Windows applications. It basically is an "off-
the-shelf" installation suite. The program will copy files from floppy disks (or a
directory on a hard disk, or a cd-rom disk) to the destination directory, and do
everything else that a Windows Installer is supposed to do. If the files are compressed
with Microsoft's COMPRESS.EXE they will be decompressed automatically. In this
respect, Chief's Installer Pro uses the routines in LZEXPAND.DLL. If the files are not
compressed, they will simply be copied to the destination directories.

 SETUP.EXE
The main executable file for Chief's Installer Pro is INSTALL.EXE - and this is the only
program that needs to be run. Also supplied is SETUP.EXE, an optional loader for
INSTALL.EXE. SETUP.EXE performs the following functions;

[a] display a "initializing install ..." message
[b] copy the necessary Install files (INSTALL.EXE, WINSTALL.INF,
WINSTALL.HLP) and WINSTALL.DLL, WINSTALP.DLL, WINSTALL.TXT,
WINSTALL.BMP (if they exist) to the TEMP directory. CTL3DV2.DLL (if found) will
be copied to the Windows SYSTEM directory - but only if a copy does not already
exist there, and no copy is currently loaded in memory.
For these purposes, all these files may be compressed on the installation disks - but
in such cases, they must retain their real names (as above) - except INSTALL.EXE,
which if compressed with the -r option, can be called INSTALL.EX_ (the original
name will be restored by SETUP.EXE). I would however suggest that the .DLL files
and the .BMP file should not be compressed.
SETUP will also optionally copy USER FILES to the TEMP directory in the same
operation. If you want any user files to be copied (because you are going to do
something with them) the file names should be specified in a $TEMPDIR line in
SETUPINF.INF. You can have only one $TEMPDIR line in that file, and this can only
contain a maximum of 10 file names (separated with semi-colons). You should
remember to delete such files with the $CLEANUP command in WINSTALL.INF.
[c] load the copy of INSTALL.EXE from the TEMP directory, with the parameters
necessary for it to work properly if run in this way

Is SETUP.EXE useful? "Very much so" is the answer. If there is more than one
installation diskette, then you should use SETUP.EXE. It will save you the
embarrassment of Windows trying to read from INSTALL.EXE after disk 2 (or
whatever), and the disk in the floppy drive does not contain INSTALL.EXE. Even if
there is only one installation diskette, it may still help keep the user occupied while
INSTALL.EXE is loading.

I have tried to make this installer as flexible and easy to use as possible. To use it, you
only need to take the following steps;

1. Create your installation disk set by placing your application's files on them (up to
64 installation disks are supported).
2.    You can compress the files with COMPRESS.EXE (it is immaterial whether you
do so or not). If files are compressed and an underscore is used in the compressed

file names, these names will only be converted to the original file names if they
were compressed with the -r option.
3. Create an installation information file in ASCII format, using a text editor. The file
should be called WINSTALL.INF, and should be in the prescribed format.
4. Run INSTALL.EXE or SETUP.EXE. It is recommended that you always tell your users
to run SETUP.EXE, instead of INSTALL.EXE.

See also;
RESERVED WORDS

FEATURES
Below is a summary of the features and restrictions in Chief's Installer Pro.

1. You can only install into any combination of the following;
[a] a target directory, and any number of subdirectories under it's directory
tree
[b] the Windows directory
[c] the Windows SYSTEM directory
[d] the TEMP directory
[e] any other specified directory

2. Only a maximum of 64 installation disks are supported. Chief's Installer Pro will
prompt for the disks as they are required.
3. Chief's Installer Pro will optionally offer to put the destination directory into the
"PATH" statement in AUTOEXEC.BAT
4. Chief's Installer Pro will optionally create Program Manager group files, and icons
for any supplied file(s) - .EXEs, README files, etc.
5. Chief's Installer Pro will optionally run any supplied program(s) during the
installation, as part of the installation process.
6. Chief's Installer Pro will optionally run any supplied program(s) immediately after
the installation is complete
7. The stipulated format of the WINSTALL.INF file must be followed strictly.
8. Chief's Installer Pro allows you to supply on-line for the installation. You have to
create a Windows help file called WINSTALL.HLP. This help file can be accessed by
clicking on the "HELP" button. A simple one is supplied. You can either use that, or
create your own. If no WINSTALL.HLP file is found in the path, then the "HELP"
button is removed from the Install window.
9. Chief's Installer Pro will check whether there is sufficient space on the target drive
- based on information which you supply as to how much disk space your application
requires. If you need extra temporary disk space for the installation, Chief's Installer
Pro can check for this also.
10. Chief's Installer Pro will make entries in any INI (or other) file(s) specified by you.
Unlimited entries can be made. Do NOT use this feature to insert an entry which
may already exist - the old entry will be deleted and replaced by the new one (e.g.,
do NOT use it for "DEVICE=" lines in SYSTEM.INI)
11. Chief's Installer Pro provides support for non-English languages.
12. Chief's Installer Pro provides support for PARTIAL INSTALLATIONS of
programs. In this respect, you can have up to 10 installation options.
13. Chief's Installer Pro provides support for displaying a banner in the background,
and for specifying the text of the banner, the font to use used for it, the font size,
the color of the text, the color of the background, and a brush to paint the
background.
14. Chief's Installer Pro provides support for displaying a bitmap file, stretched to
fill the screen.
15. Chief's Installer Pro will optionally check the disks being inserted by the user to
verify that they are the correct ones.
16. Chief's Installer Pro provides an UNINSTALLER, which can be used to uninstall
any program that was installed with Chief's Installer Pro.
17. Chief's Installer Pro will check the target directory for the existence of any copy
of each file being installed, and will optionally prompt the user for overwrite
permission.
18. Chief's Installer Pro will check for version information in existing copies of
shared binary files, and for date stamps in non-shared files.
19. Chief's Installer Pro will use the 3D dialog effects in CTL3DV2.DLL if a copy of
that file is found. If CTL3DV2.DLL is not found, the program will try to use

CTL3D.DLL. If that is also not found, then the program will use standard Windows
dialogs (the absence of these files will NOT cause an error). This feature is disabled
under Windows 95, because the 3D effect is built into Windows 95.
20. Chief's Installer Pro provides support for restarting Windows if any active shared
file was overwritten. A dialog asking for confirmation appears automatically    if any
active shared file was overwritten during the installation. The text on this dialog can
be changed by the $RESTARTWIN-MESSAGE reserved word.
21. Chief's Installer Pro provides support for displaying a README file to the user
when the installer is executed. The README file should be a plain ASCII file not
bigger than 16kb. The file should be called WINSTALL.TXT. You can cause the
contents of the file to be displayed automatically by setting $AUTO-CLICK-
BUTTON to 4 (otherwise the user will have to click on the "readme" button to
display the text. If the file WINSTALL.TXT is not found, then the "readme" button
will be removed at run time.
22. Chief's Installer Pro provides support for making entries into the the
Registration Database, by the reserved word $REG-DATA.
23. Chief's Installer Pro provides limited support for installing TRUETYPE fonts.
24. Chief's Installer Pro provides a batch language and support for running Chief's
Installer Pro batch files.
25. Chief's Installer Pro provides support for UNZIP - the UNZIP command is
compatible with PKZIP(tm) 2.x ZIP archives.
26. Chief's Installer Pro provides an Integrated Development Environment (IDE) and
a Project Manager for developing and managing installation projects.
27. Chief's Installer Pro's IDE provides an option to convert Visual BASIC Setup
Wizard (.VBZ) files to a Chief's Installer Pro project.
28. Chief's Installer Pro provides a compiler for compiling your WINSTALL.INF file and
Chief's Installer Pro batch files.
29. Chief's Installer Pro is fully compatible with 32-bit versions of Windows, such as
Windows 95 and Windows NT, and with Windows emulators such as OS/2's
Win-OS/2.
30. Chief's Installer Pro provides support for displaying messages (up to 10) during
the course of the installation. All the messages must be in an ascii file called
WINSTALL.MSG. Each message section must begin with a [#<number>] (e.g., [#1]),
and cannot be more than 8 lines long (max: 45 characters per line). The messages
are displayed in turn, automatically (at the rate of 100 divided by the number of
messages - as per the percent meter).
31. Chief's Installer Pro provides (limited) support for installing files from certain
subdirectories of the source directory (e.g., on a cd-rom or a network drive). The
scheme is to use each such subdirectory as a pseudo floppy disk - i.e., the files in
the subdirectory will be specified on a $DISK# line, and then the subdirectory itself
will be called $DISK# (e.g., $DISK2 = for the files which will be on the $DISK2 lines).
Thus the installer will automatically look for directories names $DISK# under the
source directory, to install $DISK# files from. This includes $DISK1 as well.

FOREIGN LANGUAGE SUPPORT
All the string messages presented to the user by the install erare in string tables.
There are internal ENGLISH string tables in INSTALL.EXE, UNINSTAL.EXE, and
SETUP.EXE. These will normally be used to display all the messages and information.
However, Chief's Installer Pro provides 2 methods of changing/translating the string
tables for use by the various .EXEs. One method is by compiling the string tables into
DLLs (for INSTALL.EXE and UNINSTAL.EXE) and the other is by putting the string tables
in an ASCII file (for SETUP.EXE).
INSTALL.EXE will always look for a dynamic link library file called WINSTALL.DLL from
which to load the string tables. If this file is found, the string tables are read from it by
Install at startup time. If you are going to use this DLL, it MUST be in the same
directory as INSTALL.EXE. If WINSTALL.DLL is not found, Install will use the default
(English) string tables inside INSTALL.EXE itself.
By the same token, UNINSTAL.EXE will also look for a DLL called UNINST.DLL in
order to load the string tables from it. If you create your own UNINST.DLL, it must be
in the same directory as UNINSTAL.EXE. If UNINST.DLL is not found, then UnInstall will
use the default (English) string tables inside UNINSTAL.EXE itself.
Finally, SETUP.EXE will also always look for an ASCII file called SETUPINF.INF in
order to load the string tables from it. Each of the strings must be numbered (by a
hash, followed immediately by its numeric ID), and they must all be together in a
section called [SETUP]. This is because SETUP.EXE will use the
GetPrivateProfileString API to retrieve them. A sample of this file is provided - it
mirrors the English string tables inside SETUP.EXE. If you are using an English
language installation, you should delete this file, because you do not need it.
If you create your own SETUPINF.INF, it must be in the same directory as SETUP.EXE, it
must be uncompressed, and it must be exactly in the same format as the sample
that I have provided. If SETUPINF.INF is not found, then Setup will use the default
(English) string tables inside SETUP.EXE itself.
What all this means is that you can change the language used by the installer by
simply producing your own translations of the English string tables, and compiling
them into the relevant DLLs (or putting them into SETUPINF.INF in the required form).
For these purposes, I have provided copies of my resource scripts, and a sample
SETUPINF.INF file. These serve as a guide to the string tables and the numeric IDs of
the strings. Please do NOT change the numeric ID of any string.
If anybody produces a non-English translation of the script files, please send me a
copy, so that I can package non-English versions of with subsequent releases of the
installer. If I package your translation, you name will make it into the "Credits" section
for each version that contains your translation.

 Please note this;

[a] NO checking is carried out to verify the contents of these string tables, or even
that the string tables actually exist. Thus, if you edit the string tables and/or
produce your own DLLs or SETUPINF.INF file, you are on your own.
[b] I can only vouch for the accuracy of the English version of any string table - and
even then, only the version which was produced by me. If I package any non-English
version of any file, please do not stone me if the translation is incorrect - but if you
do find errors, please DO send me what you think is a correct translation of the

string table.

THE INF FILE
The configuration file for each installation is called WINSTALL.INF. This is an ASCII
file that has to be created with a text editor (e.g., the Windows NOTEPAD applet).
Every line in the file should end with a carriage return plus a line feed - so please
avoid using UNIX editors to create your INF files).
It is essential that the instructions on the format of WINSTALL.INF be followed
carefully, otherwise, the installer will not work correctly. The best approach is to edit
the sample files which I have provided. They contain sufficient comments for them to
be understood. WINSTALL.INF is a standard ASCII file, in the following format;

1. Any line beginning with a ";", or "[" or "REM" is ignored
2. Empty lines are ignored
e.g., these lines will be ignored

[This line will be ignored]
; So will this line
REM    so will the one just above me, and me as well!

3. Each line must not contain more than 220 characters
4. There are RESERVED WORDS for every valid entry, and these must be followed
strictly.

 The Chief's Installer Pro IDE (AUTOCALC.EXE)
Considerable assistance can be derived by using the Project Manager in the Chief's
Installer Pro development environment (you need to run AUTOCALC.EXE for this) in
creating INF files. See the help file AUTOCALC.HLP for full documentation on the
Project Manager.
The IDE is an attempt to provide a facility for managing your installation projects. It
does a good job of producing template INF files for each project, but like most other
features of Chief's Installer Pro, it is entirely optional. If you do not like it, simply
delete it - I will not take it personally!

See also;
RESERVED WORDS

RESERVED WORDS
Everything is done in Install through the use of RESERVED WORDS. Each reserved
word begins with a dollar sign ($) and determines a certain aspect of Install's behaviour.
Below is a list of the reserved words and the methods of using them.
Below is an alphabeticl list of RESERVED WORDS;
$ABORT-MESSAGE
$ABORT-UNINSTAL-QUESTION
$AUTOEXEC.BAT
$AUTO-CLICK-BUTTON
$AUTO-REPLACE
$BANNER-FONT
$BANNER-FONT-SIZE
$BANNER-MESSAGE
$BANNER-SHADOW-COLOR
$BANNER-TEXT-BACKGROUND
$BANNER-TEXT-COLOR
$BANNER-WINDOW-BRUSH
$BATCH-FILE
$BIG-METER-COLOR
$BITMAP
$CANCEL-BUTTON-TITLE
$CHECK-MY-DLL-VERSIONS
$CLEANUP
$CLOSE-GROUP-BOX
$COPYBUFFER
$DATA-SPACE
$DEST
$DIALOG-ICON
$DISK
$DISKDIR
$EXEC
$FINAL-MESSAGE
$FONT
$FORCE-EXIT-WINDOWS
$FORCE-OVERWRITE-OLDER-FILES
$FORCE-RESTART-WINDOWS
$GROUP
$ICO
$ICON
$INI
$LAN-SYSDIR
$MAKE-UNINSTALL-LOG
$MAX-DUPLICATES
$NO-ABORT-BUTTON
$NO-CTL3D.DLL
$NO-END-DIALOG
$NO-HELP-BUTTON
$NO-PATH-DIALOG
$OK-BUTTON-TITLE
$OPTIONAL
$OPTIONHELP
$PAINTDIALOGS
$PRE-EXEC

$README-BUTTON-TEXT
$README-FONT
$REG-DATA
$RESTARTWIN-MESSAGE
$SETCHECKBOX
$SHOW-FILE-PERCENT
$SMALL-METER-COLOR
$SOURCEDIR
$SPACE
$SWAP-SPACE
$SYSDIR
$SYSDIR-SPACE
$TARGET
$TEMPDIR
$TEXT-BACKGROUND
$TITLE
$UNZIP
$USER-OPTION
$VERIFY-INSTALL-DISKS
$VERSION-COPY-ERROR-MESSAGE
$VERSION-INFO-TITLE
$VERSION-INFO-MESSAGE
$WINDIR
$WINDIR-SPACE
$WINDOW
$WINDOW-BACKGROUND

$TITLE
This is used to specify the name or title of your application. This is what will appear in
the title of the installation program's window - You can have only ONE such line. If you
don't supply any text for the $BANNER-MESSAGE reserved word, this title will be
used for the banner, with the words "Welcome to" prepended to it.

The Syntax is;
 $TITLE=<program title>
EXAMPLE:

 $TITLE=Great Program v1.20

 See also;
$BANNER-MESSAGE

$TARGET
This is used to specify the name of the DEFAULT target directory for the installation.
The user will be able to change this at run time. If the target directory does not exist,
Chief's Installer Pro will create it - and, if necessary, will create directories recursively.
You can have only ONE such line.
By default, ALL the files will be installed into whatever is the target directory chosen
by the user. You can however specify that certain files should be installed into
subdirectories UNDER THE TARGET DIRECTORY TREE, or into the WINDOWS
DIRECTORY, or into the WINDOWS SYSTEM DIRETORY, or into the TEMP DIRECTORY.
To use this, you use the $DEST, $WINDIR, $SYSDIR, $TEMPDIR reserved words.
This reserved word can take optional extra parameters - details of an INI file in the
Windows directory from which entries from a previous installation of your program
can be obtained. The entry here should point to the directory into which the user
installed any previous version. If such an entry is found, it will be used to replace the
default one in your $TARGET line. If no entry is found, the default will be used.
If the extra parameters are used, then the $TARGET line MUST contain 4 entries, in
the following format;

$TARGET=Default;INI file name;Section;KeyName
"Section" corresponds to "ApplicationName" in the Windows API speak (i.e., the title of
the relevant section in the INI file) and "KeyName" corresponds to it's ordinary
meaning with regard to the GetPrivateProfileString API call, which is what is used
to retrieve the entries from the INI file (see also the $INI reserved word). The INI file
name should not contain any path (just the filename only) - the program will only look
for the file in the Windows directory.
e.g.,

$TARGET=C:\CHIEPRO;CHIEFPRO.INI;ChiefPro;ChiefDir
Note that you will need to create the requisite entry with the $INI reserved word.
e.g.,

$INI=$WINDIR\CHIEFPRO.INI;ChiefPro;ChiefDir;$DEST
The Syntax is;

 $TARGET=<default directory>[;INI file name;Section;KeyName]
EXAMPLES:

 $TARGET=C:\MYPROG
 $TARGET=C:\MYPROG;PROG.INI;ProgPriv;ProgDir

See also;
$DEST
$INI
$SYSDIR
$TEMPDIR
$WINDIR

$SPACE
Use this to specify the amount of disk space needed for the installation. The amount
should be in BYTES and should only contain whole numbers (no spaces, no letters,
and no decimals).
This information is used by Install to warn the users of the amount of space that they
need to have free on their disks, and to show the progress of the installation in the
"percentage meter". Install will check to see that the specified amount of space exists
on the target drive before installation begins. If there is insufficient space, Install will
abort with an error message.
There is no need for the number to correspond exactly with the actual required
number of bytes - a difference of up to 2% of the size of your application (plus or
minus) is allowed, and such differences will be catered for automatically. In fact, it is
always good to add about 1% to the actual disk space needed - because of the
vagaries of disk cluster sizes, it may be wise to over-estimate the disk space needed
(a little bit of trial and error is in order here). You can have only ONE such line.
The amount specified here should also take into account any disk space requirements
specified in any $OPTION lines.
NOTE: The Chief Pro IDE (AUTOCALC.EXE) can be used to calculate the required
space automatically. Please read AUTOCALC.HLP for fuller details.

The Syntax is;
 $SPACE=<required disk space>
EXAMPLE:

 $SPACE=2002003

See also;
$USER-OPTION
$OPTIONAL
$SWAP-SPACE
$SYSDIR-SPACE
$WINDIR-SPACE

$SYSDIR-SPACE
This reserved word is optional. It is only useful if you are using the $SYSDIR
command to install shared files into the Windows SYSTEM directory. Its purpose is to
enable the installer to ascertain that there is sufficient space on the drive which holds
the Windows SYSTEM directory (in cases where the user is installing the program onto
another drive). The line should only contain the total size of the files that will be
installed to the Windows SYSTEM directory.
This line does not in any way affect the entry that should be on the $SPACE line,
because they serve different (but sometimes overlapping) purposes. If the user is
installing the program onto the same drive as that on which Windows is installed, this
line is ignored at run time.
NOTE: The bonus program AUTOCALC.EXE can be used to calculate the required
space automatically. Please read AUTOCALC.TXT for fuller details.

The Syntax is;
 $SYSDIR-SPACE=<space>

See also;
$SPACE
$SYSDIR
$WINDIR-SPACE

$WINDIR-SPACE
This reserved word is optional. It is only useful if you are using the $WINDIR
command to install shared files into the Windows directory. Its purpose is to enable
the installer to ascertain that there is sufficient space on the drive which holds the
Windows directory (in cases where the user is installing the program onto another
drive). The line should only contain the total size of the files that will be installed to
the Windows directory.
This line does not in any way affect the entry that should be on the $SPACE line,
because they serve different (but sometimes overlapping) purposes. If the user is
installing the program onto the same drive as that on which Windows is installed, this
line is ignored at run time.
NOTE: The bonus program AUTOCALC.EXE can be used to calculate the required
space automatically. Please read AUTOCALC.TXT for fuller details.

The Syntax is;
 $WINDIR-SPACE=<space>

See also;
$SPACE
$SYSDIR-SPACE
$WINDIR

$SWAP-SPACE
Use this to specify the amount of any temporary swap disk space needed for the
installation. The amount should be in BYTES and should only contain whole numbers
(no spaces, no letters, and no decimals).
This information is used by Install to warn the users of the amount of space that they
need to have free on their disks - bit it does not show in the "percentage meter". The
installer will check on the drive which    contains the TEMP directory to ensure that
there is sufficient swap space. This obviously presumes that all your scratch and
temporary files will be created in the TEMP directory. You can have only ONE such line.
EXAMPLE:

 $SWAP-SPACE=0

See also;
$SPACE
$SYSDIR-SPACE
$WINDIR-SPACE

$DISK
You use this reserved word to specify the disk(s) in the installation set, and the file(s)
which should be copied from them. Each file name or file specification should be
separated from the next one by a semi-colon.
You can use the wildcard character "*" in this respect.

The Syntax is;
 $DISK n = <filenames(s)>
where:

n = numbers from 1 to 64
<filename(s)> = the file specifications
the easiest thing to do would be to just specify "*.*" - to copy all the files - but you
can be more specific.

NOTES:
If you specify a file that does not exist on the disk, it will just be ignored.
Note that each line cannot be longer than 220 characters in total. Since this might
mean that all the files you want to specify for a disk might not fit on one line, you can
either put all the file specifications for each disk on a single $DISK line, or you can
split them up into several $DISK lines for better readability. For example, for DISK 1 of
the installation set, you can either put all the files on one "$DISK1=" line (if they will
fit on one line) or you can have several "$DISK1=" lines, each line listing different file
specifications to make up your DISK 1).
In most cases, judicious use of wildcard characters should mean that you only need
one line for each disk in your installation set (e.g., if you use something like:
$DISK1=*.EX_;*.HL_;*.TXT). However, of you wish to be more specific about the
files on each disk, the flexibility is available to spread each "$DISK" across many lines.
Chief's Installer Pro will prompt the user for each disk in the installation set. However,
unless you turn on disk verification with the $VERIFY-INSTALL-DISKS reserved word,
no attempt will be made to check that the disk being inserted is the correct one.
Please note this point.
Please ensure that the $DISK lines are numbered consecutively, otherwise there may
be problems - for example, don't jump from "$DISK1=" to "$DISK3=" (the problem
here is - where is $DISK 2? - if you put "$DISK2=" after "$DISK3=", then there may be
problems numbering the disks.)
Compressed files with underscores in the filename will have the filenames expanded
into the name of the original files ONLY if the original files were compressed with the
-r option
VERY IMPORTANT NOTE: Please be very careful with the way wildcard characters
are used, especially if your program spans more than one disk. For example, it is
very convenient to use *.* for all the disks in your installation set, and while this will
be okay if your program is only going to be installed from floppy disks, imagine the
chaos, if somebody copies all the files to a directory on the hard disk before installing,
or if a CD-ROM distributor puts your program in a directory on a CD-ROM. You will have
the same files ("*.*") being installed over and over again, for each disk on the
installation set, and your users will not be impressed.

Thus, unless you are absolutely certain that your program will only ever be installed
from floppy disks, you need to be selective in your use of wildcard characters - at the
least, to make sure that if all your program's files are installed from a single source
directory, none of the files which belong to one disk can be confused with files
belonging to another disk. In this wise, it may be advisable to place files on each disk
according to type and/or extension (e.g., $DISK1=*.EX_;*.HL_ : $DISK2=*.DL_;*.VB_ -
etc., etc).
You can also use the $UNZIP command on a $DISK line, to specify that a file on that
disk should be UNZIPPED instead of just copied or expanded. In this case, the files will
only go to the destination provided in the $UNZIP command.

EXAMPLES:
 $DISK 1 = *.*
 $DISK 2 = *.DLL;*.HLP;*.DRV;WS*.*;*.EX_
 $DISK 2 = EXPAND.*;COMPRESS.EXE;FRED.EXE;CHIEF.EXE
 $DISK 3 = HELP.DOC;*.FFF

 $DISK4=$UNZIP;$SOURCEDIR\BIN.ZIP;$DEST\BIN

See also;
$VERIFY-INSTALL-DISKS
$UNZIP

$DEST
[i] Where ever this appears at the beginning of a line, the following take place;

(a) "$DEST" is replaced with the target directory selected by the user. For example,
entry of "$DEST\BIN=PROG.EXE", if the user installed to "C:\NEWPROG", becomes
"C:\NEWPROG\BIN=PROG.EXE".
In this respect, you can also use $DEST to provide for installing files to other drives
and directories (i.e., not under the directory tree of the target directory, by puttin
two exclamation marks (!!) after the $DEST, and then adding the "=" sign, and the
relevant directory, followed be another "=" sign, and then the file(s) which are to go
there. You can use other reserved words (e.g., $WINDIR) here.
(b) anything after the "=" sign is taken as the file(s) to be installed into that
directory (instead of into the target directory). There can be up to 30 file
names, each separated by a semi-colon. Some limited use of wildcards is allowed
here - if you want to use wildcards, then it must be an asterix, followed by a dot,
and then the full extension of the files - e.g., *.TXT;*.INI;*.DLL;*.EXE. Great care
must be taken not to confuse the program when using wildcards in this way.
Careless use of wildcards might lead to files going where they were not meant to go.
It is better to name individual files whenever possible.

The sub directories will be created when necessary - but note that the order in which
they are specified may be important - if there are deep levels of nesting, the ones
higher up the tree must be specified first.
Please NOTE that in the case of files compressed with the -r switch, you should use
the real (original) names of the uncompressed files, and NOT the names of the
compressed files. For example, if the file MYPROG.DLL was compressed to
MYPROG.DL_, you should put MYPROG.DLL on this line. The compressed filenames
are only allowed on $DISK lines.
You can have up to any number of $DEST lines (i.e., no limit).
[ii]    Where ever this appears elsewhere in a line, the "$DEST" is replaced with the
target directory selected by the user. This use of the $DEST reserved word is only
useful in the "$ICON", "$INI", and "$EXEC" lines.

The Syntax is;
 $DEST=<filename(s)>
EXAMPLES:

 $DEST\BIN=*.EXE;*.DLL;WINSTALL.INF
 $DEST\HELP=*.HLP;*.TXT;*.WRI
 $DEST\SAMPLES=SAMPLE1.INF;SAMPLE2.INF;SAMPLE3.INF
 $DEST!!=D:\TEMP=*.INI;*.TXT;*.TKT
 $DEST!!=$WINDIR\BAK=*.INI;*.TXT;

See also;
$EXEC
$ICON
$INI
$TARGET
$SYSDIR
$TEMPDIR
$WINDIR

$WINDIR
[i] Whenever this appears at the beginning of a line, the files on that line are installed
to the Windows directory (instead of the target directory). You can have an unlimited
number of $WINDIR lines. Each line can contain a maximum of 30 file names, each
separated by a semi-colon. Some limited use of wildcards is allowed here - if you
want to use wildcards, then it must be an asterix, followed by a dot, and then the full
extension of the files - e.g., *.INI;*.EXE. Great care must be taken not to confuse the
program when using wildcards in this way. Careless use of wildcards might lead to files
going where they were not meant to go. It is better to name individual files whenever
possible. Note that each line cannot be longer than 220 characters.
Please NOTE that in the case of files compressed with the -r switch, you should use
the real (original) names of the uncompressed files, and NOT the names of the
compressed files. For example, if the file MYPROG.DLL was compressed to
MYPROG.DL_, you should put MYPROG.DLL on this line. The compressed filenames
are only allowed on $DISK lines.
[ii] Where ever this appears elsewhere in a line, the "$WINDIR" is replaced with the
Windows directory. This use of the $WINDIR reserved word is only useful in the
"$ICON", "$INI", and "$EXEC" lines.
EXAMPLES:

 $WINDIR=PROG1.EXE;PROG2.EXE;PROG2.EXE;*.INI
 $WINDIR=RATTER.EXE;RETTO.EXE;DRAT.EXE
 $WINDIR=ROTTO.INI;ROUTER.INI;TROUBLE.INI

See also;
$DEST
$SYSDIR
$TARGET
$TEMPDIR

$SYSDIR
[i] Whenever this appears at the beginning of a line, the files on that line are installed
to the Windows SYSTEM directory (instead of the target directory). You can have an
unlimited number of $SYSDIR lines. Each line can contain a maximum of 30 file
names, each separated by a semi-colon.
Some limited use of wildcards is allowed here - if you want to use wildcards, then it
must be an asterix, followed by a dot, and then the full extension of the files - e.g.,
.VBX;.DRV;*.DLL;*.TTF. Great care must be taken not to confuse the program
when using wildcards in this way. Careless use of wildcards might lead to files going
where they were not meant to go. It is better to name individual files whenever
possible.
When wildcards are used in this way, any conflict is resolved in the following
order: [1] $SYSDIR, [2] $WINDIR, [3] $TEMPDIR, [4] $DEST. This means for
example that, if you use "*.DLL" in a $SYSDIR line, and then you put something like
PROG.DLL in a $DEST line, the file PROG.DLL will still be installed into the Windows
SYSTEM directory, because the $DEST entry is resolved last. Please note this point.
Note also that each line cannot be longer than 220 characters.
Please NOTE that in the case of files compressed with the -r switch, you should use
the real (original) names of the uncompressed files, and NOT the names of the
compressed files. For example, if the file MYPROG.DLL was compressed to
MYPROG.DL_, you should put MYPROG.DLL on this line. The compressed filenames
are only allowed on $DISK lines.
[ii] Where ever this appears elsewhere in a line, the "$SYSDIR" is replaced with the
Windows SYSTEM directory. This use of the $SYSDIR reserved word is only useful in the
"$ICON", and "$EXEC" lines.
EXAMPLES:

 $SYSDIR=PROG1.DLL;PROG2.DLL;PROG2.DLL;MYDRV.DRV
 $SYSDIR=RATTER.DLL;RETTO.DLL;DRAT.DRV;*.VBX;*.TTF
 $SYSDIR=ROTTO.DRV;ROUTER.DRV;TROUBLE.DRV

See also;
$DEST
$TARGET
$TEMPDIR
$WINDIR

$TEMPDIR
[i] Whenever this appears at the beginning of a line, the files on that line are installed
to the TEMP directory (instead of the target directory). There can be up to 30 file
names, each separated by a semi-colon. Some limited use of wildcards is allowed
here - if you want to use wildcards, then it must be an asterix, followed by a dot, and
then the full extension of the files - e.g., *.TMP;*.$$$. Great care must be taken not
to confuse the program when using wildcards in this way. Careless use of wildcards
might lead to files going where they were not meant to go. It is better to name
individual files whenever possible. You can have only ONE such line.
[ii] Where ever this appears elsewhere in a line, the "$TEMPDIR" is replaced with the
TEMP directory. This use of the $TEMPDIR reserved word is only useful in the "$INI",
and "$EXEC" lines.

See also;
$DEST
$TARGET
$SYSDIR
$WINDIR

$AUTO-REPLACE
Use this to specify any files that should be replace automatically if they already exist
(i.e., without first prompting the user for confirmation).
This reserved word if effective for matching files which exist in the target directory,
and which are NOT newer (by their date stamp) than the files being installed. If the
existing file has got a more recent date stamp than the one being installed, then the
user WILL be prompted before it is overwritten.
You can have an unlimited number of $AUTO-REPLACE lines, and up to 30 file names
on each line (separated by semi-colons). Some limited use of wildcards is allowed
here - if you want to use wildcards, then it must be an asterix, followed by a dot, and
then the full extension of the files - e.g., *.TXT;*.INI;*.DLL;*.EXE. Great care must be
taken not to confuse the program when using wildcards in this way. Careless use of
wildcards might lead to files going where they were not meant to go. It is better to
name individual files whenever possible.
Please NOTE that in the case of files compressed with the -r switch, you should use
the real (original) names of the uncompressed files, and NOT the names of the
compressed files. For example, if the file MYPROG.DLL was compressed to
MYPROG.DL_, you should put MYPROG.DLL on this line. The compressed filenames
are only allowed on $DISK lines.

The Syntax is;
 $AUTO-REPLACE=<filename(s)>
EXAMPLES:

 $AUTO-REPLACE=PROG1.EXE;PROG1.DLL;PROG4.DLL;MYPROG.INI
 $AUTO-REPLACE=RATTER.RAT;RETTO.RET;DRAT.DRA
 $AUTO-REPLACE=ROTTO.ROT;ROUTER.RUT;TROUBLE.HUT

See also;
EXISTING FILES
$FORCE-OVERWRITE-OLDER-FILES
$SKIP-IDENTICAL-FILES

$INI
This is used to specify any ASCII files that configuration information should be written
into. Normally, these will be INI files of some sort, but they can be any file, as long as
any such file is in ASCII format.
You have have up to any number of $INI lines (i.e., no limit) - and each line MUST be
in the format prescribed below;
 Each line must contain at least 4 entries - each separated with a semi-colon

[a] the first entry is the NAME of the file to be written to - a full path must be
supplied - otherwise, the file is presumed to be in the WINDOWS directory. You can
use "$DEST" here, to specify files in the directory tree of the target directory. If the
file does not exist, it is created.
[b] the second entry is the title of the section ("Application name" in Windows API
speak) that should contain the entry.
[c] the third entry is the name of the entry you wish to make ("Keyname" in
Windows API speak)
[d] the fourth entry is the string that you wish to associate with the entry. If you wish
to specify an empty string as the value for the entry, just supply " " as the 4th entry.
[e] you can have an optional fifth entry NO-REPLACE. Use this to signify that an
existing entry should not be replace. By default, an existing entry in an INI file will
be replaced by the ones specified in the $INI lines. Using NO-REPLACE as the fifth
entry in a $INI line will ensure that while an entry will be made if none already
exists, old entries will be left intact.
[f] you can have an optional sixth entry - a user option number. Use this to
assign the INI entry to a user option. This is done by specifying the relevant user
option (e.g., $USER-OPTION3) as the 6th entry on the $INI line (or as the 5th entry, if
NO-REPLACE is not used for the 5th entry). If the specified user option is de-selected
by the user at runtime, then the INI entry will not be made.

The Syntax is;
 $INI=<Filename>;<Section>;<KeyName>;<String>[;NO-REPLACE][;$USER-
OPTION#]
EXAMPLES:

 $INI=$DEST\MYPROG.INI;CONFIG;STARTUP;PROG.EXE -FE=XDS.XCL
 $INI=WIN.INI;EXTENSIONS;GFD;$DEST\BIN\GFD2.EXE ^.GFD
 $INI=C:\AUTOEXEC.BAT;MYPROG;SET PROGDIR;$DEST;$USER-OPTION1

See also;
$DEST
$SYSDIR
$WINDIR

$GROUP
This is used to specify the DEFAULT name of the Program Manager Group in which the
icons will be created. This can be the name of an existing group (e.g., "Accessories",
"Main", etc.) in which case, the items will just be added to the ones already in that
group. However, you may specify a completely new group. If this does not exist, it will
be created.
You can have only ONE such line - but you can specify other group names for different
icons in the $ICON reserved word.
$GROUP can also take an extra (and optional) parameter - the word AUTO, the word
DISABLE, or the word SHOW-COMBO. If used, this parameter should appear after
the group name and should be separated from the group's name by a semi-colon.

1. AUTO - means create a group automatically - do not allow the user to uncheck
the "Create Program Manager Group" checkbox.
2. DISABLE - means do NOT create any group at all - and do not allow the user to
specify that a group should be created.

If either of these parameters is used, then the checkbox will not be presented. In none
of them is used, then the checkbox will be presented and the user will have a choice.
Both of these options deny the user a choice in the matter (i.e., either the group will
be created automatically or it will not be created at all, regardless of what the user
may want).

3. SHOW-COMBO - means show a combo box displaying the names of the
available Program Manager groups. The user can then choose any of the listed
groups to use as the main group.

The Syntax is;
 $GROUP=<groupname>[;parameter]
EXAMPLES:

 $GROUP=My Program
 $GROUP=My Program;AUTO
 $GROUP=My Program;DISABLE
 $GROUP=My Program;SHOW-COMBO

See also;
$ICO
$ICON

$ICON
This is used to specify the names of the files for which you want Program Manager
icons to be created. There can be a maximum of 128 icons.
Each $ICON line should contain only ONE entry. This is the name of the file to create
an icon for (this could be a program file plus a parameter or any other file). This
should be followed by a semi-colon, and after the semi-colon, the title that Program
Manager should give to the icon; and (optionally), preceded by a semi-colon, the
name of any other group (i.e., if different from the one in the $GROUP reserved word)
that the icon should be created in; and (optionally), the name of the .ICO file to use for
the file.
If no group is specified on this line, then the one pointed to by the $GROUP reserved
word will be used.
If no external .ICO file is specified, then Program Manager will use the first icon it finds
in the specified file, or if the file has no icon, then a default icon will be used.
If you specify the name of an external .ICO file, then the full path name of the icon file
must be provided, AND, that path MUST be the same as the path of the file that a
Program Manager icon is being created for. What this means is that the full path of
that file must be the first thing on the $ICON line (i.e., you cannot specify an
executable, and then the file as an argument to that executable).
Secondly, if you specify an external .ICO file, then you MUST also specify the group in
which the icon will be created (i.e., there must be 4 entries on the $ICON line in such
cases). In this case, you can simply put $GROUP as the group name.
Normally, existing icons will not be duplicated if the installation is run again. To
change this behaviour, you can specify ALLOW-DUPLICATES as the LAST parameter to
$ICON, in which case, an icon will be created regardless of whether an icon by the
same title already exists in the group.

The Syntax is;
 $ICON=<filename>;<title>[;<group>;<.ICO file>][;ALLOW-DUPLICATES]
EXAMPLES:

 $ICON=$DEST\MYMAIN.EXE;Cool Prog v1.20
 $ICON=BACKUP.EXE;Backup Applet;Accessories
 $ICON=$DEST\MYPROG.HLP;My help file;$GROUP;$DEST\PROG.ICO
 $ICON=$DEST\README.TXT;Readme file;$GROUP;$DEST\TEXT.ICO
 $ICON=NOTEPAD.EXE REGISTER.TXT;Registration documentation;ALLOW-
DUPLICATES

See also;
$DEST
$GROUP
$ICO
$SYSDIR
$WINDIR

$PRE-EXEC
This line is optional. It specifies the name(s) of any program(s) that should be run
during the installation, as part of the installation process. These programs will be run
immediately after the files have been copied from the disks. Install will try to wait for
these programs to terminate, before continuing. Such attempted waiting will work for
Windows programs, but will fail if used to run DOS programs under OS/2.
There can be only ONE such line, but it may contain up to 5 programs, each separated
with a semi-colon.

The Syntax is;
 $PRE-EXEC=<program name> [parameters] [;<other program>]
EXAMPLE:

 $PRE-EXEC=$WINDIR\EXPAND.EXE $DEST\REE.BI_;$TEMPDIR\GAGOFF.EXE >
NUL

See also;
$DEST
$EXEC
$SYSDIR
$TEMPDIR
$WINDIR

$CLEANUP
This is optional. It specifies the name(s) of any temporary files(s) that should be
deleted after the installation. Such deletions (if any) will be done immediately after
any $PRE-EXEC lines have executed and returned. If there is no $PRE-EXEC line, then
the deletions will be done after the $INI lines have been processed. If there are no $INI
lines, then the deletions will be immediately after the $DISK lines have been
processed. If the specified files do not exist, they are simply ignored.
You can have an unlimited number of $CLEANUP lines. Each line should contain only
ONE entry. You can use wildcard characters here, but note that the program will NOT
accept "*.*".
Please use this reserved word with care. I accept no responsibility for any problems
caused by using it.
The $TEMPDIR can be used here with the Install program files in cases where you
choose to use SETUP.EXE as a loader. This way, Install can cleanup the files which
have been copied by SETUP.EXE to the TEMP directory.

The Syntax is;
 $CLEANUP=<filespecs>
EXAMPLES:

 $CLEANUP=$TEMPDIR\TMP*.*
 $CLEANUP=$DEST\TEMPFIL.INI
 $CLEANUP=$TEMPDIR\INSTALL.EXE
 $CLEANUP=$TEMPDIR\WINSTAL*.*

See also;
$DEST
$TEMPDIR

$EXEC
This line is optional. It specifies the name(s) of any program(s) that should be run
immediately after the installation is completed (with any optional parameters to be
passed to the programs). You can have only ONE such line, but you can put as many
as 5 programs on this line, each separated by a semi-colon.

The Syntax is;
 $EXEC=<program name> [parameters] [;<other program>]
EXAMPLE:

 $EXEC=CONFIG.EXE -DIR=C:\TEMP; MYPROG1.EXE; MYPROG2.EXE -NEW

See also;
$DEST
$PRE-EXEC
$SYSDIR
$TEMPDIR
$WINDIR

$WINDOW
This line is optional. It should specify whether you want Install to start up maximized
or not. If the entry here is MAXIMIZE then Install will start maximized - otherwise it
will just start normally. You can have only ONE such line.

The Syntax is;
 $WINDOW=MAXIMIZE

$COPYBUFFER
This line is optional. It sets the size of the buffer used by Install to copy the files. The
buffer size should be a whole number, representing the number of BYTES to be used.
This number MUST be between 2048 and 32760. If it is set lower than 2048, then
Install will replace the supplied value with 2048 - and if it is set higher than 32760,
then Install will use 32760.
The higher the buffer, the faster the files are copied. However, the buffer size also
dictates;

[a] the frequency with which the "percent" meter is updated
[b] the frequency with which Install will "yield" the CPU and allow Windows to do
other things (each time COPYBUFFER bytes are copied, Install "yields" for 128
milliseconds.

Therefore, if the number is set too high, the percent meter will not be updated
frequently enough, and the display might look odd. If, on the other hand, the setting is
very low, then the percent meter will be updated frequently, but the file copying will
become much slower.
The DEFAULT value is 8190, and this will be used if this setting is left empty. I suggest
a setting of 16384 (i.e., 16kb) as a good setting which adequately compromises
between speed of copying, and the frequency of the progress bar's being updated.

The Syntax is;
 $COPYBUFFER=<buffersize>
EXAMPLE:

 $COPYBUFFER=4095

$WINDOW-BACKGROUND
This line is optional. It can be used to set the background color of the main window of
Chief's Installer Pro. The default is to have a light gray background for the main dialog,
and a white background for other dialogs (the light gray will also be used for other
dialogs if you use the $PAINTDIALOGS command). Because the background is a
Windows brush handle, the only valid values for this setting are 0, 1, 2, 3, or 4.

0 = White Brush
1 = Light gray Brush
2 = Gray Brush
3 = Dark gray Brush
4 = Black Brush

If you use this to change the window background, be sure to also set the $TEXT-
BACKGROUND (below) to an appropriate setting. For example, if this setting is 2 (dark
gray) then the text background should be set to 128,128,128 (so that the window and
text backgrounds should match).

The Syntax is;
 $WINDOW-BACKGROUND=<value>
EXAMPLE:

 $WINDOW-BACKGROUND=1

See also;
$TEXT-BACKGROUND

$TEXT-BACKGROUND
This line is optional. It can be used to set the background color of the text in the
main window of Chief's Installer Pro. The default is to have a light gray background.
Unless there is a pressing need to use another color, the color used here should be the
same as that used for the $WINDOW-BACKGROUND.
 The color used here can either be either;

[a] one long integer value (you can use hexadecimal values in Pascal notation) - see
below for explanation

 or
[b] three values represent RGB (red, green, blue) values.

If using RGB values, they should be separated by commas, or semi-colons (e.g:   
128,128,128 - for a dark gray background)
If using a hexadecimal value (those that begin with $00 and then are followed by SIX
values). The SIX values here represent Blue, Green, Red - or reversed RGB. In this
respect, FF turns the color to full intensity, 00 turns it off, and any other value varies
the intensity.
Note that the color that results from any value depends on the display driver of the
user (particularly the number of colors). For a 256 color setup, you can use the
following EXAMPLE values;

1. White : $00FFFFFF
2. White : 255,255,255
3. Black : $00000000
4. Black : 0,0,0
5. Dark Gray : $00808080
6. Dark Gray : 128,128,128
7. Red : $000000FF
8. Red : $255,0,0
9. Blue : $00FF0000
10. Blue : 0,0,255
11. Light Cyan : $00FFFF00
12. Green : $0000FF00
13. Yellow : $0000FFFF
14. Magenta : $00FF00FF
15. Light Gray : $006F9FFF
17. Light Gray : 192,192,192
16. Gray : $00C0C0C0

The Syntax is;
 $TEXT-BACKGROUND=<color value>
EXAMPLES:

 $TEXT-BACKGROUND=192,192,192
 $TEXT-BACKGROUND=128,128,128
 $TEXT-BACKGROUND=$00FFFFFF

See also;

$WINDOW-BACKGROUND
$BANNER-TEXT-COLOR
$BANNER-TEXT-BACKGROUND
$BANNER-WINDOW-BRUSH

$PAINTDIALOGS
This line is optional. It is for use in those cases when you want the status dialogs to
be painted with the same text and background colors as the main Install window (the
default is that the status "percent" dialogs have a white background).    This line takes
no parameter.

The Syntax is;
 $PAINTDIALOGS

$SETCHECKBOX
This line is optional. It automatically checks the checkbox titled "create Program
Manager item". This line takes no parameter.

The Syntax is;
 $SETCHECKBOX

$NO-END-DIALOG
This line is optional, and is not very useful. All it does is to suppress the final dialogs
which inform the user about whether the installation was successful or not, and that
the installation is completed. The default behaviour of Install is to present these
dialogs to the user. Use this reserved word to disable that feature.
If this feature is used, the warning dialog that comes up if the size of the files actually
installed is less than 98% of the size stated in the $SPACE reserved word is also
disabled. This line takes no parameter.

The Syntax is;
 $NO-END-DIALOG

$NO-PATH-DIALOG
This line is optional. It disables the dialog box which asks the user whether the target
directory should be added to the PATH statement in AUTOEXEC.BAT. The default
behaviour is to present this dialog. Use this reserved word to disable that feature. This
line takes no parameter.

$SHOW-FILE-PERCENT
This line is optional. What it does is to show a small percent meter for the progress of
each individual file being installed (i.e., in addition to the large percent meter which
shows the progress of the whole installation process). This reserved word takes no
parameter.

The Syntax is;
 $SHOW-FILE-PERCENT

$MAKE-UNINSTALL-LOG
This line is optional. What it does is to cause Chief's Installer Pro to create a log file of
all the changes it is making to the system. This file is a binary file (to prevent
tampering with it) and is called UNINSTAL.LOG. It is created in the target directory,
and should be left there. This file will be used by the UNINSTALLER to uninstall the
program, if the user so wishes.
If the user is installing over an existing installation and a copy of UNINSTAL.LOG
already exists, Chief's Installer Pro will just add the new information to the end of the
existing one. This may result in some information being duplicated in the file, but will
not lead to any strange result. The uninstaller is smart enough to handle any
duplicated information.
This reserved word can take as an optional parameter the name of the file to use as
the LOG file for UNINSTAL.EXE. The parameter should be separated with a semi-
colon, and should contain a filename only (no path). If no filename is provided, the
default name UNINSTAL.LOG will be used. If a filename is used here, it MUST be
supplied as a SECOND parameter to UNINSTAL.EXE
This reserved word can also take another optional parameter - the word
OVERWRITE. When this is used, the installer marks the LOG file so that
UNINSTAL.EXE will overwrite every file and directory which it has deleted, so that they
cannot be undeleted. This parameter should be used with great care.

The Syntax is;
 $MAKE-UNINSTALL-LOG[;logfilename][;OVERWRITE]
 EXAMPLES:
 $MAKE-UNINSTALL-LOG
 $MAKE-UNINSTALL-LOG;OVERWRITE
 $MAKE-UNINSTALL-LOG;VER2.LOG
 $MAKE-UNINSTALL-LOG;VER2.LOG;OVERWRITE

See also;
THE UNINSTALLER

$USER-OPTION
The user option lines are optional. By default, Chief's Installer Pro will install all the
files which are specified in the $DISK lines. However, sometimes, the user will only
want to install the binaries, or the documentation, or the libraries, or any other partial
installation.
The $USER-OPTION reserved word gives you the means of providing user-selectable
installation options, for various parts of your program. So you can split your program's
installation into program files, help files, libraries, dictionaries, bitmaps, etc., etc., and
the user will be given a dialog with check boxes which allows him to choose, or just to
install everything. This means that your users will now have the facility for
incremental installation of different parts of your program.
There can be up to 10 $USER-OPTION lines, each of them specifying a different
optional part of your program. If you specify a user option, you must also use the
$OPTIONAL reserved word (see below) to specify the files which make up that user
option. In such cases, appropriate check boxes will appear.
Each $USER-OPTION line must contain the title of the option (this is the text that will
appear beside it's check box), followed by a semi-colon, and then the amount of disk
space (in bytes) which the option will require. This amount will be added to the
amount specified in the $SPACE reserved word, such that if you make all the different
parts of your installation optional, then the $SPACE line must specify 0 (zero) as the
required disk space.
NOTE: The bonus program AUTOCALC.EXE can be used to calculate the required
space automatically. Please read AUTOCALC.TXT for fuller details.
$USER-OPTION lines can also take an extra (and optional) parameter - the word
UNCHECKED. If used, it must be put last, separated from the size of the option's files
by a semi-colon. If it is used, the checkbox for the option is not checked when the
installer starts. The user can check it afterwards.

The Syntax is;
 $USER-OPTION n = <title>;<disk space needed>[;UNCHECKED]
where:

n = any number from 1 to 10
<title> = the text to show beside the option's check box
<disk space needed> = the amount of disk space required by the option (in bytes)

EXAMPLES:
 $USER-OPTION1=Program files;171000
 $USER-OPTION2=Optional DLL files;10000
 $USER-OPTION3=Optional executables;104000
 $USER-OPTION4=Readme files;14384;UNCHECKED

See also;
$OPTIONAL
$OPTIONHELP
$SPACE

$OPTIONAL
This reserved word is used to specify the files that make up any user-selectable
installation options specified with the $USER-OPTION reserved word. Each line
should specify a list the files that make up the particular option number, each file
name separated from the next one by a semi-colon. Some limited use of wildcards is
allowed here - if you want to use wildcards, then it must be an asterix, followed by a
dot, and then the full extension of the files - e.g., *.TXT;*.INI;*.DLL;*.EXE. Great care
must be taken not to confuse the program when using wildcards in this way. Careless
use of wildcards might lead to files going where they were not meant to go. It is better
to name individual files whenever possible. A maximum of 30 file specifications is
allowed on each line - but note that each line cannot be longer than 220 characters in
total.
You can have an unlimited number of $OPTIONAL lines for each option specified by a
$USER-OPTION line. This facility is to allow for situations where all the file names will
not fit on one line. The fact that you can have multiple lines for each option number,
and that each line can contain up to 30 file names, means that you can in theory have
a large number of files making up each option. However, please do not go overboard
with this, because each file name on each $OPTIONAL line has to be checked against
every file being installed, to see whether it should be installed or not. Therefore, if
there are too many files in the $OPTIONAL lines, the installation process will be slowed
down (this might not be a problem on machines with fast CPUs).

The Syntax is;
 $OPTIONAL n = <filenames>
where:

n = any number from 1 to 10 (corresponding to the relevant $USER-OPTION)
<filenames> = the files which make up the option - each separated by a semi-
colon

EXAMPLES:
 $OPTIONAL1=INSTALL.EXE;WINSTALL.HLP;INSTALL.TXT;WINSTALL.INF
 $OPTIONAL1=SAMPLE1.INF;SAMPLE2.INF;SAMPLE3.INF;SAMPLE4.INF
 $OPTIONAL2=ENGLISH.dll;dansk.dll;deutsch.dll
 $OPTIONAL3=UNINSTAL.EXE;SETUP.EXE;
 $OPTIONAL4=*.WRI;*.TXT;*.DOC;*.PS;READ.ME

See also;
$OPTIONHELP
$USER-OPTION

$BANNER-FONT
This reserved word specifies the font to use for the banner text that will be displayed
in the background of Chief's Installer Pro's dialog window (on the Windows desktop).
Most of the Windows TRUETYPE fonts can be used here. The font will be in bold faced
characters, and will be italicised.
This line is optional. It also depends on the file WINSTALP.DLL. That file contains all
the banner functionality, and it's presence is not needed for Chief's Installer Pro to
function (you just won't get any banner). If the file is not found by Chief's Installer Pro,
this line will have no effect. It is also ineffective if the $WINDOW=MAXIMIZE
reserved word is used. This is because when Chief's Installer Pro's main window is
maximized, the banner is not displayed at all (for obvious reasons).
If the named font does not exist on the system, then Windows will try to use a
substitute font, or at the least, a COURIER font. If this line is empty, then Chief's
Installer Pro will default to using the TrueType TIMES NEW ROMAN font.

The Syntax is;
 $BANNER-FONT=
EXAMPLE:

 $BANNER-FONT=ARIAL

See also;
$BANNER-FONT-SIZE
$BANNER-MESSAGE
$BANNER-TEXT-COLOR
$BANNER-TEXT-BACKGROUND
$BANNER-SHADOW-COLOR
$BANNER-WINDOW-BRUSH
$WINDOW

$BANNER-FONT-SIZE
This reserved word specifies the "point" size of the font used to display the banner.
The size should be a whole number.
This line is optional. It also depends on the file WINSTALP.DLL. That file contains all
the banner functionality, and it's presence is not needed for Chief's Installer Pro to
function (you just won't get any banner). If the file is not found by Chief's Installer Pro,
this line will have no effect. It is also ineffective if the $WINDOW=MAXIMIZE
reserved word is used. This is because when Chief's Installer Pro's main window is
maximized, the banner is not displayed at all (for obvious reasons).
If this line is empty, Chief's Installer Pro defaults to using 35 point. Note that you
should be careful to cater for the smallest display resolutions (practically, 640x480
displays). Therefore the font size should be small enough for the banner message to
fit in a standard VGA screen).

The Syntax is;
 $BANNER-FONT-SIZE=
EXAMPLE:

 $BANNER-FONT-SIZE=45

See also;
$BANNER-FONT
$BANNER-MESSAGE
$BANNER-TEXT-COLOR
$BANNER-TEXT-BACKGROUND
$BANNER-SHADOW-COLOR
$BANNER-WINDOW-BRUSH
$WINDOW

$BANNER-MESSAGE
This line specifies the message to be displayed as the banner for your installation.
This message is displayed in the banner window, on the Windows desktop. The
message should be short enough to fit on one line, taking into account the font being
used, and its size.
This line is optional. It also depends on the file WINSTALP.DLL. That file contains all
the banner functionality, and it's presence is not needed for Chief's Installer Pro to
function (you just won't get any banner). If the file is not found by Chief's Installer Pro,
this line will have no effect. It is also ineffective if the $WINDOW=MAXIMIZE
reserved word is used. This is because when Chief's Installer Pro's main window is
maximized, the banner is not displayed at all (for obvious reasons).
If this line is empty, Chief's Installer Pro will default using the title of your program as
specified on the $TITLE line, and the words "Welcome to" will be prepended to that
title.

The Syntax is;
 $BANNER-MESSAGE=<banner message> [;CODE]
In this syntax, "CODE" is optional. Possible values are CENTERED (centre the banner
message); or VERTICAL (display the text vertically). If VERTICAL is used, you also
neet to provide an "x" coordinate for the text
EXAMPLES:

 $BANNER-MESSAGE=This is a Great Program!
 $BANNER-MESSAGE=This is a Great Program;CENTERED
 $BANNER-MESSAGE=Chief Pro;VERTICAL;5

See also;
$BANNER-FONT
$BANNER-FONT-SIZE
$BANNER-TEXT-COLOR
$BANNER-TEXT-BACKGROUND
$BANNER-SHADOW-COLOR
$BANNER-WINDOW-BRUSH
$TITLE
$WINDOW

$BANNER-TEXT-COLOR
This reserved word specifies the color to be used for the banner text. This color can be
either one long integer value (TColorRef in Windows) or three RGB values. The values
that can be used here are the same as those that can be used in the $TEXT-
BACKGROUND reserved word. Please see the documentation on it for further details.
This line is optional. It also depends on the file WINSTALP.DLL. That file contains all
the banner functionality, and it's presence is not needed for Chief's Installer Pro to
function (you just won't get any banner). If the file is not found by Chief's Installer Pro,
this line will have no effect. It is also ineffective if the $WINDOW=MAXIMIZE
reserved word is used. This is because when Chief's Installer Pro's main window is
maximized, the banner is not displayed at all (for obvious reasons).
If this line is empty, install defaults to using a white text color ($00FFFFFF).

The Syntax is;
 $BANNER-TEXT-COLOR=<color value>
EXAMPLE:

 $BANNER-TEXT-COLOR=$00C0C0C0

See also;
$BANNER-FONT
$BANNER-FONT-SIZE
$BANNER-MESSAGE
$BANNER-TEXT-BACKGROUND
$BANNER-WINDOW-BRUSH
$BANNER-SHADOW-COLOR
$TEXT-BACKGROUND
$WINDOW

$BANNER-TEXT-BACKGROUND
This reserved word specifies the color to be used for the banner text background. This
color can be either one long integer value (TColorRef in Windows) or three RGB values.
The values that can be used here are the same as those that can be used in the
$TEXT-BACKGROUND reserved word. Please see the documentation on it for further
details.
This line is optional. It also depends on the file WINSTALP.DLL. That file contains all
the banner functionality, and it's presence is not needed for Chief's Installer Pro to
function (you just won't get any banner). If the file is not found by Chief's Installer Pro,
this line will have no effect. It is also ineffective if the $WINDOW=MAXIMIZE
reserved word is used. This is because when Chief's Installer Pro's main window is
maximized, the banner is not displayed at all (for obvious reasons).
If this line is empty, install defaults to using a blue text background ($00800000).

The Syntax is;
 $BANNER-TEXT-BACKGROUND=<color value>
EXAMPLE:

 $BANNER-TEXT-BACKGROUND=$00800000

See also;
$BANNER-FONT
$BANNER-FONT-SIZE
$BANNER-MESSAGE
$BANNER-TEXT-COLOR
$BANNER-SHADOW-COLOR
$BANNER-WINDOW-BRUSH
$TEXT-BACKGROUND
$WINDOW

$BANNER-SHADOW-COLOR
This reserved word is optional. It is used to give the banner text a "shadow". The
color value here is in the same format as $BANNER-TEXT-COLOR and $BANNER-
TEXT-BACKGROUND. The shadow is disabled by default (by giving the shadow color
a default value less than 0). If the value is 0 or higher, then the shadow becomes
enabled, and the $BANNER-TEXT-BACKGROUND line becomes disabled.

The Syntax is;
 $BANNER-SHADOW-COLOR=<color value>
EXAMPLE:

 $BANNER-SHADOW-COLOR=255,0,0

See also;
$BANNER-FONT
$BANNER-FONT-SIZE
$BANNER-TEXT-COLOR
$BANNER-TEXT-BACKGROUND
$BANNER-SHADOW-COLOR
$BANNER-WINDOW-BRUSH
$TITLE
$WINDOW

$BANNER-WINDOW-BRUSH
This reserved word specifies the color to be used to paint the background of the
banner window. The painting is not done as a straight color. Rather, it starts as the
color you specify (at the top of the screen), and gradually changes, until it reaches
black (at the bottom of the screen). This presents a pleasant visual effect. This is
even more so if you use the same or nearly the same color as the one used in the
$BANNER-TEXT-BACKGROUND line.
This color can be either one long integer value (TColorRef in Windows) or three RGB
values. The values that can be used here are the same as those that can be used in
the $TEXT-BACKGROUND reserved word. Please see the documentation on it for
further details.
This line is optional. It also depends on the file WINSTALP.DLL. That file contains all
the banner functionality, and it's presence is not needed for Chief's Installer Pro to
function (you just won't get any banner). If the file is not found by Chief's Installer Pro,
this line will have no effect. It is also ineffective if the $WINDOW=MAXIMIZE
reserved word is used. This is because when Chief's Installer Pro's main window is
maximized, the banner is not displayed at all (for obvious reasons).
If this line is empty, install defaults to using a blue color ($00800000).

The Syntax is;
 $BANNER-WINDOW-BRUSH=<color value>
EXAMPLE:

 $BANNER-WINDOW-BRUSH=100010

See also;
$BANNER-FONT
$BANNER-FONT-SIZE
$BANNER-MESSAGE
$BANNER-TEXT-COLOR
$BANNER-TEXT-BACKGROUND
$BANNER-SHADOW-COLOR
$TEXT-BACKGROUND
$WINDOW

$BITMAP
This reserved word specifies a Windows bitmap file to display in the banner window.
The bitmap will be stretched to fill the screen, and therefore the painting will often be
slow. The banner text will then be displayed on top of the bitmap. If a bitmap file is
specified the painting of the banner window background, as specified in the
$BANNER-WINDOW-BRUSH line will not take place, since the bitmap will be
occupying the whole screen. Only standard Windows .BMP files are supported.
This line is optional. It also depends on the file WINSTALP.DLL. That file contains all
the banner functionality, and it's presence is not needed for Chief's Installer Pro to
function (you just won't get any banner). If the file is not found by Chief's Installer Pro,
this line will have no effect. It is also ineffective if the $WINDOW=MAXIMIZE
reserved word is used.
$BITMAP can take an extra optional parameter NORMAL. If used, this should appear
AFTER the name of the bitmap file, separated by a semi-colon (e.g.,
$BITMAP=winstall.bmp;normal). This parameter disables the stretching of the bitmap,
and the bitmap will be displayed in its normal size, centered on the screen. In such
cases also, the main dialog will be hidden once the "Start Install" button is clicked - so
that more of the bitmap will be visible.
This bitmap line is there only as an added extra. The "bitblitting" is often very slow,
has problems with large bitmap files, and so many not be ideal in many cases. But it is
there anyway. You may simply ignore it. If the line is empty, then Chief's Installer Pro
will by default look for a file called WINSTALL.BMP to use for the background bitmap.
If WINSTALL.BMP is not found, then the program simply use the banner window
brush value to paint the background of the banner window.

The Syntax is;
 $BITMAP=<bitmap file name>[;NORMAL]
EXAMPLES:

 $BITMAP=MYPROG.BMP
 $BITMAP=WINSTALL.BMP;NORMAL

See also;
$BANNER-MESSAGE
$BANNER-TEXT-COLOR
$BANNER-TEXT-BACKGROUND
$BANNER-SHADOW-COLOR
$BANNER-WINDOW-BRUSH
$WINDOW

$VERIFY-INSTALL-DISKS
This line is optional. By default, when the user is prompted to insert a particular
numbered disk (e.g., "Please insert disk 4 in drive"), Chief's Installer Pro does not
perform any check to verify that the disk being inserted is actually the correct one.
You can however use this reserved word to force Chief's Installer Pro to perform these
checks.
When this reserved word is used, Chief's Installer Pro will check each installation disk
(from disk 1 onwards) to verify that it is the correct disk. This check is performed by
looking for a file on the disk, which corresponds to the $DISK# being installed, but
with the extension .DSK. Thus for example, if Chief's Installer Pro asked for disk 4 to
be inserted in the drive, it will check for the existence of a file called $DISK4.DSK on
any disk that is inserted. If the file exists, then this is taken as the correct disk, and
the installation continues. If the file is not found on the disk, then the user is prompted
to insert the disk again, and this will go on until either the correct disk is inserted, or
the user clicks on "Abort".
The contents of the .DSK file are normally irrelevant. It can be an empty file - but the
file must exist. However, you can optionally provide for the contents of the .DSK file to
be checked. To do this, you need to supply 'READ-FILES' as a parameter. If this feature
is turned on, then the installer will treat the .DSK file for every disk as a Windows .INI
file, and check in the [disk-id] section for the keyname 'disk-id'. The entry here must
match the name of the .DSK file being examined - e.g., a .DSK file called $DISK1.DSK
must have the following entries;

[disk-id]
disk-id=$DISK1.DSK

Note that if the entry does not match, the installer will assume that the disk is the
wrong one and will keep prompting for the disk. Thus, you should use this feature very
carefully.

EXAMPLES:
 $VERIFY-INSTALL-DISKS
 $VERIFY-INSTALL-DISKS;READ-FILES

See also;
$DISK

$AUTO-CLICK-BUTTON
The main window of Chief's Installer Pro has got four push buttons, labelled (in
English) "Start Install", "Abort", "Help", and "View Read Me". You can use this reserved
word to send a mouse click to any one of these buttons. When you send a mouse click
in this way, the effect is exactly as if the user had clicked on that push button with the
left mouse button. This will activate whatever the push button is supposed to do.
The line takes one parameter - the ID of the button to send the mouse click to. For this
purpose, 1=Start Install, 2=Abort , 3=Help, and 4=View Read Me. This line is
useful for example, for starting the installation without giving the user any opportunity
to make any selections or choices, or for clicking on the "Help" or "Readme" button so
that your help file or your readme file (WINSTALL.TXT) will be loaded automatically
(i.e., to force your users to read your documentation).
This line is optional.

The Syntax is;
 $AUTO-CLICK-BUTTON=<button ID>
EXAMPLE:

 $AUTO-CLICK-BUTTON=1

See also;
COMMAND LINE OPERATION

$NO-CTL3D.DLL
This line is optional, and is probably not very useful. It is for the purpose of giving
people the option of dispensing with the use of CTL3DV2.DLL. If this line is found, the
Chief's Installer Pro will not use the 3D dialog effects in CTL3DV2.DLL. The question is
"why would anyone want to do this?". The answer is that some Windows video drivers
are buggy and might not necessarily want to co-exist peacefully with CTL3DV2.DLL in
all circumstances.
Not mentioning any names, but I know of one company which produces buggy
Windows drivers for their display cards which sometimes fall into the category
described above. I personally do not use this reserved word, and it may indeed be
unnecessary to use it. However, I think that it is good to have the option.
This line takes no parameter.

$RESTARTWIN-MESSAGE
Chief's Installer Pro provides support for restarting Windows if any active shared file
was overwritten. A dialog asking for confirmation appears automatically if any active
shared file was overwritten during the installation. The text on this dialog can be
changed by this reserved word. If this reserved word is not used, a default message is
used, which tells the user that at least once active DLL has been replaced, and that
the user should restart Windows immediately.
The message on this line can be up to 200 characters. Obviously, that is too wide for a
dialog box. Therefore I have decided to support one formatting control here. You can
insert carriage returns at any point in the message by using the "newline" code (i.e., \
n). If a literal "\n" is desired, an exclamation mark should precede the "n" (i.e., "\!n").
Furthermore, the "\n" is case sensitive - so, for example, "\N" will not be converted.
This line can be used to DISABLE the dialog that asks if the user wants to restart
Windows. To disable the feature, use $RESTARTWIN-MESSAGE=DISABLE.
Please note that if you disable this feature in this way, it is up to you to inform your
user that Windows must be restarted when an active DLL has been overwritten. How
you will ascertain this fact is beyond me. I have only included this feature because a
user asked for it. If you use it, you are on your own.

EXISTING-FILES
Chief's Installer Pro will check in the target directories for existing copies of every file
being installed. If no copy of the file exists, then the installation will proceed. If the file
exists, the existing copy and the copy being installed will both be checked to see
which one is newer.
Chief's Installer Pro uses two methods of deciding whether or not a file is older than
another. In the case of shared binary files (i.e., the ones that go into the Windows
and/or the Windows SYSTEM directory), the version information in the files will first be
compared. If there is no version information in the files, then their date stamps of the
file will be compared. In the case of other files, only the date stamps will be compared
(except in the case of proprietary DLLs if you use the $CHECK-MY-DLL-VERSIONS
reserved word).
When Chief's Installer Pro has ascertained which of the two copies of a file is newer,
what happens next depends on the choices you made in your INF file, and/or the
choices made by your user. Normally, Chief's Installer Pro will simply display a dialog
box informing the user that a copy (or a newer copy) of the file already exists in the
target directory, and then show the user the details of the two copies.
You can decide in advance that certain files specified by you should be over-written
automatically ($AUTO-REPLACE) or that all older versions of files should be over-
written automatically ($FORCE-OVERWRITE-OLDER-FILES). In this case, a file is
regarded as "older" if it is not newer. In the case of files which both have version
information, if the version number is the same (e.g., they are both 1.1) then the date
stamps will be used to decide which is "older". If the date stamps are the same, then
the one that already exists in the target directory is treated as "older" than the one
being installed. In the case of files without version information, if both files have the
same date stamp, then the existing copy is still regarded as "older".

SHARED FILES;
For the purposes of the installation, Chief's Installer Pro will regard a file as a shared
file only if the following conditions apply;

[1] the file is being installed into the Windows or Windows SYSTEM directory, and
[2] the file's extension is either; [a] .DLL or [b] .EXE or [c] .VBX or [d] .OCX or [e]
.DRV or [f] .CPL

See also;
$AUTO-REPLACE
$CHECK-MY-DLL-VERSIONS
$FORCE-OVERWRITE-OLDER-FILES
$SKIP-IDENTICAL-FILES
$VERSION-INFO-TITLE
$VERSION-INFO-MESSAGE
$VERSION-COPY-ERROR-MESSAGE

$CHECK-MY-DLL-VERSIONS
This line is optional. By default, when another copy of a .DLL file already exists in the
target directory, Chief's Installer Pro will check for version information in that DLL only
if the target directory is the Windows directory or the Windows SYSTEM directory. That
is, only SHARED DLLs will be normally checked for version information. DLLs which
are going into your application's directory for example will only be checked for their
date stamps.
If you want ALL DLL files to be checked for their version information (i.e., regardless
of their destination directory), then you should use this reserved word. This line takes
no parameter.

See also;
EXISTING FILES

$VERSION-INFO-TITLE
This line is optional. By default, when Chief's Installer Pro is reporting the version
information on an existing copy of a shared file, the version number is reported under
the heading "File Version". You can use this reserved word to change that string to
something else. This is really useful only for those who want to display that string in a
language other than English. If you change this string, please try to make the
replacement as short as possible.

The Syntax is;
 $VERSION-INFO-TITLE=<title>
EXAMPLE:

 $VERSION-INFO-TITLE=Product Version Number

See also;
EXISTING FILES
$VERSION-INFO-MESSAGE

$VERSION-INFO-MESSAGE
This line is optional. When Chief's Installer Pro has retrieved the version information
on an already existing copy of a shared file, a dialog informs the user that a copy of
the file already exists and then asks for over-write permission. By default, this dialog
will not contain any further explanation of the situation, and will not make any
recommendation as to the course of action to be taken.
You can use this reserved word to provide some explanation and/or a recommended
course of action. If anything appears on this line, it will be added to the dialog.
The message on this line can be up to 200 characters. Obviously, that is too wide for a
dialog box. Therefore I have decided to support one formatting control here. You can
insert carriage returns at any point in the message by using the "newline" code (i.e., \
n). If a literal "\n" is desired, an exclamation mark should precede the "n" (i.e., "\!n").
Furthermore, the "\n" is case sensitive - so, for example, "\N" will not be converted.

The Syntax is;
 $VERSION-INFO-MESSAGE=<recommendation/explanation>
EXAMPLE:

 $VERSION-INFO-MESSAGE=You should click on "NO" \n if the target file is
NEWER.

See also;
EXISTING FILES
$VERSION-INFO-TITLE

$FINAL-MESSAGE
If you want to give your user any final message (after the installation is complete)
then you can put that message on this line. The message will be displayed in a dialog
box at the tail end of the installation - just after the $EXEC line is executed.
The message on this line can be up to 200 characters. Obviously, that is too wide for a
dialog box. Therefore I have decided to support one formatting control here. You can
insert carriage returns at any point in the message by using the "newline" code (i.e., \
n). If a literal "\n" is desired, an exclamation mark should precede the "n" (i.e., "\!n").
Furthermore, the "\n" is case sensitive - so, for example, "\N" will not be converted.

The Syntax is;
 $FINAL-MESSAGE=<message>
EXAMPLE:

 $FINAL-MESSAGE=Please shut down all applications and restart Windows.

$VERSION-COPY-ERROR-MESSAGE
This line is optional. By default, when Chief's Installer Pro is unable to successfully
install a file, all that the user will get is an error message that there was an error
writing to the file, and then the installation will proceed with the other files.
In the case of shared files, the problem may be that the file is currently in use and
therefore cannot be over-written. With shared files, a temporary copy will normally
exist in the TEMP directory (and will NOT have been deleted by the installer if the
attempt to install it was unsuccessful). Chief's Installer Pro will therefore by default
display a message advising the user to copy the file manually after closing Windows.
Note that the situation described above will only be exist, if [a] the file is a shared file,
and, [b] a copy of it already exists in the Windows or Windows SYSTEM directory, and,
[c] an attempt to install over the existing copy was unsuccessful.
You may want to change this message described above to something that suits you,
and this reserved word allows you to do that. A carriage return will automatically be
added at the end of this message, followed by the full pathname of the temporary
copy of the file.
Note that because the last thing that appears in the dialog box is the full path name of
the temporary file in the TEMP directory, if you use this line to change the error
message, you need to express it in such a way that it leads up to the file name.
The message on this line can be up to 200 characters. Obviously, that is too wide for a
dialog box. Therefore I have decided to support one formatting control here. You can
insert carriage returns at any point in the message by using the "newline" code (i.e., \
n). If a literal "\n" is desired, an exclamation mark should precede the "n" (i.e., "\!n").
Furthermore, the "\n" is case sensitive - so, for example, "\N" will not be converted.

The Syntax is;
 $VERSION-COPY-ERROR-MESSAGE<message>
EXAMPLE:

 $VERSION-COPY-ERROR-MESSAGE=Please copy it from the TEMP directory
later \n. A temporary copy exists as:

See also;
EXISTING FILES

$FORCE-OVERWRITE-OLDER-FILES
This line is optional. By default, when a copy of the file being installed already exists
in the target directory, Chief's Installer Pro will ask the user whether the existing copy
should be over-written or not. This will be the case even when the existing file is an
older version which really ought to be replaced. This could be a bit of a nuisance
sometimes, and so you might want older versions of files to be replaced automatically.
You use this reserved word to achieve that.
Note that this reserved word is different from the $AUTO-REPLACE reserved word, in
that, this one applies to all files, while the former applies only to selected files.
This line takes no parameter.

See also;
EXISTING FILES
$AUTO-REPLACE
$CHECK-MY-DLL-VERSIONS
$SKIP-IDENTICAL-FILES

$SKIP-IDENTICAL-FILES
This reserved word is optional. It causes a file to be skipped if a copy of it already
exists in the target directory, and that copy is exactly the same version as the copy on
the installation disk. In order to decide whether two files are exactly the same version,
their date/time stamps, file sizes, and version information (if the files are shared DLLs)
are compared. If there is any discrepancy in any of these, the files are treated as not
being the same, and will not be skipped.
The comparisons work correctly in all my tests - but if you are going to use this
feature, please test it thoroughly with your particular set of files.

See also;
$AUTO-REPLACE
$FORCE-OVERWRITE-OLDER-FILES

$README-BUTTON-TEXT
Chief's Installer Pro provides support for displaying a README file to the user before
the installation begins. The readme file should be a plain ASCII file, should not be
larger than 8192 bytes, and should be called WINSTALL.TXT. A button with the
caption "View Read Me" is presented for this purpose.    You can change the caption
(text) on the "readme" button with this reserved word. The text used here must not be
longer than 20 characters.
You can cause the contents of the file to be displayed automatically by setting
$AUTO-CLICK-BUTTON to 4 (otherwise the user will have to click on the "readme"
button to display the text). If the file WINSTALL.TXT is not found, then the "readme"
button will be removed at run time.

The Syntax is;
 $README-BUTTON-TEXT=<button caption>
EXAMPLE:

 $README-BUTTON-TEXT=&Installation Notes

See also;
$README-FONT

$README-FONT
This reserved word is optional. It is used to change the font in which the text in the
"Readme" dialog is displayed, from a proportional font (MS Sans Serif, 9 point) to a
FIXED or MONO spaced font (Courier 8 point).

The Syntax is;
 $README-FONT=FIXED

See also;
$README-BUTTON-TEXT

$REG-DATA
This reserved word is optional. It provides support for making entries into the
Registration Database. You can have an unlimited number of $REG-DATA lines, and
each line can contain only a single entry. The lines can contain only the keys/sub-keys
that you want to create (e.g., associating a file extension with your program, etc). In
this case, the installer will prepend HKEY_CLASSES_ROOT\ to each of your entries,
but you may wish to provide the full entry, including the root key yourself      (NOTE: **
This is a 16-bit program, so please do NOT use any root key other than
HKEY_CLASSES_ROOT under Win95 or Windows NT). Full support for the additional
Win95 and Windows NT roots will be provided when a Win32 version of Chief's
Installer Pro is released.
Entries made in the registration database in this way willl be removed by the
uninstaller if and when the user chooses to uninstall the program.

The Syntax is;
 $REG-DATA=[ROOTKEY\]<subkey>=<value>
EXAMPLES:

 $REG-DATA=HKEY_CLASSES_ROOT\ChiefPro = Chief's Installer Pro
 $REG-DATA=.inf = ChiefPro
 $REG-DATA=.chf = ChiefPro
 $REG-DATA=ChiefPro\shell\open\command = $DEST\install.exe %1
 $REG-DATA=ChiefPro\shell\print\command = $DEST\install.exe /p %1
 $REG-DATA=ChiefPro\protocol\StdFileEditing\verb\0 = Edit
 $REG-DATA=ChiefPro\protocol\StdFileEditing\server = $DEST\install.exe

$DIALOG-ICON
This reserved word is optional. It can be used to change the icon that is displayed on
the installer's dialogs. The reserved word takes one parameter - a number which
corresponds to that of the required icon. The icons must be in a DLL called
WINSTALC.DLL, and must be given given numeric names from 3 onwards (e.g.,
3, 4, 5, 6, etc.). Icons 1 and 2 (5.25 and 3.5 inch icons) are inside INSTALL.EXE itself.
There can be up to 250 icons in WINSTALC.DLL, but only one can be used. If this
reserved word is not used, the the default will be the 3.5" icon.

The Syntax is;
 $DIALOG-ICON=<icon number>
EXAMPLE:

 $DIALOG-ICON=4

$FONT
This reserved word is optional. It is used to install TRUETYPE fonts. The reserved
word takes 2 parameters. The first is the name of the font file (xxx.TTF) which will be
used, and the second is the name or description of the font. Note that the description
of the font must be accurate - exactly as it appears in the Windows Control Panel. The
program will try to create a .FOT file in the Windows SYSTEM directory, and make the
necessary entries in the Windows INI files. If the font is already installed, it will simply
be reinstalled again.
You can have an unlimited number of $FONT lines. Note that you need to direct the
font files to the Windows SYSTEM directory with the $SYSDIR command.

The Syntax is;
 $FONT=<fontfile.TTF>;
EXAMPLES:

 $FONT=ARIALBD.TTF;Arial Bold (True Type)
 $FONT=CHIEFBD.TTF;Bold Chief (True Type)

$SOURCEDIR
This reserved word is optional. It points to the directory from which the program was
actually installed, but can also be used to change the source directory from the
default (useful for internal corporate customisations).
EXAMPLES:

 $INI=$DEST\PROG.INI;History;SourceDir;$SOURCEDIR
 $SOURCEDIR=F:\USR\LOCAL\BIN\NEWPROG

See also;

$ABORT-MESSAGE
This is the message that will appear to the user when the user does something to
terminate the installation (e.g., clicking on the desktop "Abort" button) after the
installation has commenced.

The Syntax is;
 $ABORT-MESSAGE=<message>
EXAMPLE:

 $ABORT-MESSAGE=Do you really want to stop?

See also;
$NO-ABORT-BUTTON

$ABORT-UNINSTAL-QUESTION
This is the question that the user will be asked, if while running the uninstaller, the
user clicks on the 'Close' option in the system menu of the uninstall dialog.

The Syntax is;
 $ABORT-UNINSTAL-QUESTION=<question>
EXAMPLE:

 $ABORT-UNINSTAL-QUESTION=Sure you want to stop the uninstall?

$AUTOEXEC.BAT
The purpose of this (obsolecent in view of Windows 95) is to make entries into the
user's AUTOEXEC.BAT file. The installer willl search for the AUTOEXEC.BAT file, first, in
the root directory of drive C:, and then in the directories in the "PATH". If it is not
found in any of these places, then nothing will happen. There is NO LIMIT to the
number of $AUTOEXEC.BAT lines that you can have in your WINSTALL.INF file. You can
use the $DEST reserved word here.

The Syntax is;
 $AUTOEXEC.BAT=<entry>
EXAMPLES:

 $AUTOEXEC.BAT=SET PATH=%PATH%;$DEST\BIN
 $AUTOEXEC.BAT=SET TROOK=C:\TROOK\TROG

$BATCH-FILE
This allows you to specify a Chief's Installer Pro batch file which the installer will
execute during the course of the installation. Only one file name is allowed on each
$BATCH-FILE line. In WINSTALL.INF, you can have an unlimited number of $BATCH-
FILE lines. However, in SETUPINF.INF, you can only have one $BATCH-FILE line.

The Syntax is;
 $BATCH-FILE=<filename>
EXAMPLE:

 $BATCH-FILE=$SOURCEDIR\FIRST.CHF
 $BATCH-FILE=$DEST\SECOND.TXT

See also;
BATCH COMMANDS
BATCH FILES

$BIG-METER-COLOR
This changes the colour of the big percent meter. It takes the same syntax as $TEXT-
BACKGROUND

The Syntax is;
 $BIG-METER-COLOR=<value>
EXAMPLE:

 $BIG-METER-COLOR=$00808080

See also;
$TEXT-BACKGROUND

$CANCEL-BUTTON-TITLE
This can be used to change the caption of the "Cancel" buttons on the text entry
dialog boxes. This is obsolescent will often be overridden by the new string resource
#543.

The Syntax is;
 $CANCEL-BUTTON-TITLE=<caption>
EXAMPLE:

 $CANCEL-BUTTON-TITLE=&Forget it

See also;
$OK-BUTTON-TITLE

$CLOSE-GROUP-BOX
Group boxes (with internal numeric IDs of 1 to 9)    exist around different controls in
the main dialog window. This reserved word allows you to close any or all of these
group boxes, by supplying their numeric IDs as parameters (separated by semi-
colons);

The Syntax is;
 $CLOSE-GROUP-BOX=<id number[s]>
EXAMPLE:

 $CLOSE-GROUP-BOX=1;5;6

$DATA-SPACE
This is the space requirement for any non-optional data that your app might need to
create at installation time. It will not form part of the calculations for the percent
meter - but it will be added internally to the required free space when the installer is
checking whether there is sufficient space on the target drive.

The Syntax is;
 $DATA-SPACE=<value>
EXAMPLE:

 $DATA-SPACE=2048000

See also;
$SPACE

$DISKDIR#
A source directory path can (optionally) be specified for the files on each disk (one
path only for each disk). This is specified by using the $DISKDIR reserved word. If no
source directory is specified, it is presumed that the disk's files are to be installed
from the general source directory.

The Syntax is;
 $DISKDIR#=<dir name>;[CODE]
In this sceranio, "#" stands for the number of the disk. "CODE" is optional. When used,
it specifies whether (for disk 2 to the end) the installer should prompt the user to
insert a disk. It defaults to NOT prompting (to simplify installing from cd-rom or
network drives). If you want the user to be prompted for a particular disk, put ASK, or
PROMPT, or just 1 as the code. Note that "CODE" is not valid for disk 1.
 NOTES:

1. If the specified directory is NOT found, the installer will prompt the user for a
disk.
2. The installer will still automatically look for $DISK# directories under the
specified directory
3. This feature is optional, and is not needed at all. It should be used sparingly,
since it has not been tested in all possible scenarios. It is NOT advised to use this
feature when installing from FLOPPY disks (i.e., it is added mainly for the
convenience of those who wish to install from cd-rom, or hard disk). Using it in
respect of floppy disks will NOT be supported by me.

EXAMPLES:
 $DISKDIR1=F:\USER\LOCAL\INSTALL
 $DISKDIR2=Z:\;ASK

See also;
$DISK

$FORCE-EXIT-WINDOWS
This takes no parameter. If it is used, then Windows will be closed down at the end of
the installation, without giving the user any say in the matter. Note that this feature
uses the EXITWINDOWS() API call. Thus it will fail if any program refuses to
terminate (e.g., if the user has a DOS session open).    Note also that if you use this
command, it is advisable to inform your user of what will happen, with the $FINAL-
MESSAGE command.

See also;
$FINAL-MESSAGE
$FORCE-RESTART-WINDOWS

$FORCE-RESTART-WINDOWS
This takes no parameter. If it is used, then Windows will be closed down and restarted
at the end of the installation, without giving the user any say in the matter. Note that
this feature uses the EXITWINDOWSEXEC() API call. Thus it will fail if any program
refuses to terminate (e.g., if the user has a DOS session open). Note also that if you
use this command, it is advisable to inform your user of what will happen, with the
$FINAL-MESSAGE command.

See also;
$FINAL-MESSAGE
$FORCE-EXIT-WINDOWS

$ICO
This is an alternative to the $ICON command. This one gives you more control over
the icon creation process, and also has the advantage that there is no limit to the
number of icons you can create with it (cf9$ICON has a limit of 128 entries), but this
way of creating icons is a more low level approach. Note that icon placement in
existing groups is sometimes misaligned when using the $ICO command.
The $ICO command take a number of parameters (up to 11, each separated with a
semi-colon, or a comma) to control the details of the icons being created.

The Syntax is;
 $ICO=<parameters>

Parameters
1 = the group name (or $GROUP for the default)
2 = allow duplicate icons? (0 for NO; 1 for YES)
3 = command line
4 = icon's title
5 = file to load the icon from    (optional)
6 = icon index in the icon file (optional)
7 = x position of the icon in group (optional)
8 = y position of the icon in group (optional)
9 = working directory (optional)
10= hotkey (optional)
11= minimize (0 for NO; 1 for YES) (optional; defaults to NO)

Any parameter marked as optional does not have to be supplied. Just supply a comma
or a semi-colon instead. "Hotkey" consists of a number, made up of a code for a
system key (CTRL, ALT, or SHIFT) plus the ascii code of the letter to be used with it.

Hotkey Codes:
Alt      = 1024
Ctrl    =    512
Shift =    256

So, if for example you want to use Alt+S as the hotkey, then: 1024+83 (i.e., 1107)
would be the number.
EXAMPLES:

 $ICO=$GROUP;0;$DEST\TROOK.HLP;Trook Help;$DEST.ICO;0;;;$DEST;1107;1
 $ICO=$GROUP;0;$DEST\TROOKCFG.HLP;Trook CFG Help
 $ICO=Trook Trog;0;$DEST\TROOKTRG.EXE;The Great Trook;;;;;;1108;

See also;
$ICON

$LAN-SYSDIR
This was introduced by request. Normally, if the Windows SYSTEM directory is not a
subdirectory of the Windows directory, this is an indication of a networked Windows
environment, and the shared files that are to go to the Windows SYSTEM directory will
in such cases normally be installed to the user's Windows directory (in many networks
the SYSTEM directory will be read-only).
If you want all these precautions (which after all are only following Microsoft
documentation) to be circumvented and for the shared files to still to the Windows
SYSTEM directory on the network server, then use this reserved word.
Note that if you use this command, you are on entirely your own, and I will
answer no questions if something goes wrong. If the SYSTEM directory on the
network server cannot be written to for some reason, your installation will fail, and
that, probably woefully. You have been warned!!!

The Syntax is;
 $LAN-SYSDIR=$SYSDIR
That is the only way in which this reserved word will work.

$MAX-DUPLICATES
This command was introduced by request. It allows the installation of the same file
into more than one destination directory. The command takes one parameter - the
maximum number of times a single file can be duplicated in this way. By default, this
value is set at 1. You can increase it to any number up to 30.
Note that increasing this number will mean the installer looping through each $DEST\
xx directory the specified number of times, for EACH file being installed. This is
guaranteed to slow down the installation considerably, if the specified number is too
high. Using it can also lead to multiple copies of files which you do not really want to
be duplicated - this is especially so if you use wilcards at all, in your $DEST\xx lines.
Thus, if you are only going to install a few files into more than one directory, it is
better to avoid this command altogether, and use the COPY command in a batch
file. In fact, it is not recommended to use this $MAX-DUPLICATES command at all.
Nothing can be achieved by it that cannot be better achieved by using the COPY
command in a batch file.

The Syntax is;
 $MAX-DUPLICATES=<number>
EXAMPLE:

 $MAX-DUPLICATES=4

See also;
$BATCH-FILE
$DEST

$NO-ABORT-BUTTON
This specifies that the "Abort" button (on the desktop) should not be displayed. This
command takes no parameter.

See also;
$NO-HELP-BUTTON

$NO-HELP-BUTTON
This specifies that the "Help" button (on the desktop) should not be displayed. This
command takes no parameter. Note that if the file WINSTALL.HLP is not found, then
"Help" button will not be displayed anyway.

See also;
$NO-ABORT-BUTTON

$OK-BUTTON-TITLE
This can be used to change the caption of the "OK" buttons on the text entry dialog
boxes. This is obsolescent will often be overridden by the new string resource #542.

The Syntax is;
 $OK-BUTTON-TITLE=<caption>
EXAMPLE:

 $OK-BUTTON-TITLE=&Go on!

See also;
$CANCEL-BUTTON-TITLE

$OPTIONHELP#
This is to present a brief explanation of the user-options to the user. Each user-option
will have a small button next to it, if there is an OPTIONHELP for that option. Clicking
on that button will display a message box with your brief explanation.
Each user option may have up to 10 $OPTIONHELP# lines - but an absolute maximum
limit of 1024 bytes applies to each user option. Realistically, this maximum should be
512 bytes, because of limits in the MessageBox() API when using CTL3D.

The Syntax is;
 $OPTIONHELP#=<help text>
EXAMPLES:

 $OPTIONHELP1=These files are absolutely necessary for \nthe program to
work.
 $OPTIONHELP2=These are optional bitmap and icon files.

See also;
$OPTIONAL
$USER-OPTION

$SMALL-METER-COLOR
This changes the colour of the small percent meter. It takes the same syntax as
$TEXT-BACKGROUND

The Syntax is;
 $SMALL-METER-COLOR=<value>
EXAMPLE:

 $SMALL-METER-COLOR=$00808080

See also;
$TEXT-BACKGROUND

$UNZIP
Chief's Installer Pro features support for unzipping files. The UNZIP support is
compatible with PKZIP (tm) 2.x ZIP archives. This command is used to unzip a file
during the installation. You have have an unlimited number of $UNZIP lines in your INF
file, each of them specifying a single file. For the $UNZIP command to work, the file
WINSTALZ.DLL must be present on your DISK #1, and if there is more than one
disk in your installation set, your users MUST run SETUP.EXE, and not
INSTALL.EXE - otherwise, the unzip will most certainly fail.
The $UNZIP command can also be used in the $DISK lines, to specify that a ZIP
archive should be unzipped from a particular installation disk. In this case, the files in
the ZIP archive will only go to the directory supplied as a parameter to $UNZIP.
Please note that if the ZIP archive contains sub-directories, the directory structure
inside the ZIP archive will be created/restored in the target directory. This behaviour
cannot be changed.
Please note also that this command cannot handle ZIP archives which are split across
more than one disk.
The Syntax is;
 $UNZIP=<zipfile>;<target directory>;<CODE>
 or, if used on a $DISK# line;
 $DISK#=$UNZIP;<zipfile>;<target directory>;<CODE>

"Code" specifies how to deal with files which already exist in the target directory.
Possible values are;

[a] OVERWRITE-ALL (overwrite all existing files without warning)
[b] OVERWRITE-OLDER (overwrite only older files [by date-stamp])
[c] SKIP (skip existing files)
[d] CONFIRM (ask for confirmation before overwriting existing files)

EXAMPLES:
 $UNZIP=$SOURCEDIR\BIN.ZIP;$DEST\BIN;SKIP
 $UNZIP=$TEMPDIR\TROOK.001;$DEST\TROOK;OVERWRITE-OLDER
 $DISK3=$UNZIP;$TEMPDIR\TROOKCFG.002;$DEST\TROOKCFG;CONFIRM

See also;
$DISK

Batch Files
Chief's Installer Pro provides support for running commands via batch files. For this
purpose, Chief's Installer Pro implements a batch language and batch commands
which are roughly similar to the DOS commands and batch language, but which are
different in some respects.
Batch commands provide a very effective means of extending the functionality of
Chief's Installer Pro. Since it is impossible to envisage in advance all the possible
scenarios in which the installer will be used, this type of functionality presents the
best approach to increasing the programs's flexibility.
The batch features are activated by the $BATCH-FILE reserved word. This specifies
the name of a batch file. Each batch file can contain an unlimited number of lines -
but note that the bigger a batch file is, the longer it will take to read it. Each line in a
batch file can be up to a maximum of 200 characters.

 NOTES:
1. Whatever is done by these batch commands will NOT be undone by the
uninstaller.
2. Batch files are executed in the order in which they appear, and are processed
immediately after the files have been installed (after $ini, $fonts, $reg-data, and
$autoexec.bat, but before $pre-exec, and $exec)
3. Certain reserved words are invalid when used in a batch file that is run from
SETUPINF.INF - e.g., $DEST, and $TARGET, since they might be changed by the
user after the main install dialog is loaded. The same thing goes for $SOURCEDIR,
which might sometimes be changed by the user.

See also;
BATCH COMMANDS
$BATCH-FILE

BATCH COMMANDS
Chief's Installer Pro batch files support sundry commands. Many of them operate like
their DOS, OS/2, or Windows NT counterparts, but most are different in various respects.
The main point is that if you are familiar with the DOS internal commands, many of
these commands will also be familiar to you. Below is a list of batch commands, and a
summary of their syntax, and what they do.
#CONST
#DEFINE
#INCLUDE
APPENDFILE
ATTRIB
BEEP
CD
COPY
CREATEFILE
DEL
DELAY
DISPLAY
EXEC
EXECHIDDEN
EXECWAIT
EXIT
EXITWINDOWS
EXITWINDOWSEXEC
EXPANDFILE
FOR
GOTO
HALT
IF CHOICE
IF CONFIRM
IF CPU
IF DISKFREE
IF ERRORCODE
IF EXIST
IF FSIZE
IF HAS-FPU
IF INPUT
IF ISDIRECTORY
IF NOT-CONFIRM
IF NOT-ERRORCODE
IF NOT-EXIST
IF NOT-FSIZE
IF NOT-ISDIRECTORY
IF SLANGUAGE
IF VMODE
IF WINVER
LOADCTL3D
MD
RD
REN
SAY
UNLOADCTL3D
UNZIP

WRITEBAT
WRITEINF
WRITEINI
WRITETEXT

See also;
BATCH FILES

#CONST or $CONST
This command is used to define some    GLOBAL constants in a Chief's Installer Pro
batch file. The defined constants then apply throughout the batch file. Wherever
Chief's Installer Pro encounters the defined constant in the batch file, it is replaced by
the value which you assigned to it. Such constants should be defined at the
beginning of the batch files. You can have an unlimited number of #CONST lines.
This command is similar to the #DEFINE command, but is different in a very important
respect - with #DEFINE, parts of any word that matches will be replaced - however,
with #CONST, only whole words will be replaced.
The changes are done in memory - so the physical contents of the batch file are
unaltered.

Restrictions and features;
1. #CONST can only be used ONCE for any particular constant in a batch file.
2. Each #CONST entry must be on a line by itself.
3. You cannot use one #CONST constant in the definition of another one.
4. If you use the constant's name (or any part of its name) as part of its value, it will
be taken as a literal value.
5. A value assigned to a constant with $DEFINE can be used in defining the value of
a $CONST constant. This is one important advantage over using $DEFINE.

The syntax is:
#CONST <constant> = <value>

Examples;
#CONST OLDDIR=$WINDIR\PROG\OLD
#CONST MYCOMMAND=$DEST\BIN\MYPROG.EXE

See also;
#DEFINE

#DEFINE or $DEFINE
This command is used to define some GLOBAL constants in a Chief's Installer Pro
batch file. The defined constants then apply throughout the batch file. Wherever
Chief's Installer Pro encounters the defined constant in the batch file, it is replaced by
the value which you assigned to it. Such constants should be defined at the
beginning of the batch files. You can have an unlimited number of #DEFINE lines.
The changes are done in memory - so the physical contents of the batch file are
unaltered.

Restrictions;
1. $DEFINE can only be used ONCE for any particular constant in a batch file.
2. Each #DEFINE must be on a line by itself.
3. You cannot use one defined constant in the definition of another one.
4. You CANNOT use the constant's name (or any part of its name) as part of
its value. However, you can use the (already defined) constant's name in a
constant that you are defining with the #CONST command.
5. Each constant defined in this way MUST be entirely unique. This is because
partial matches will be changed as well. Thus, for example, you cannot have one
constant called DIR and another one called DIREC, if you are going to use #DEFINE
with DIR. This is because when occurences of DIR are being changed, the places
where those letters occur in DIREC (i.e., the first 3 letters of DIREC) will be changed
as well - and this is probably not what you want. Also, defining a constant as
COMMAND and another one as COMMAND2 or MYCOMMAND is not advisable,
because they have the string "COMMAND" common to them all. Please note this
point.
GOOD TIP: If you must use similar names, the best thing to do is to interpose
another character after the FIRST character of the common parts. For example, you
could have a constant called COMMAND, and others called C1OMMAND,
C2OMMAND, C3OMMAND, etc.
ANOTHER TIP: Most of these restrictions do not exist when you use the #CONST
command. That command is identical to this one, except that it only changes whole
words.

The syntax is:
#DEFINE <constant> = <value>

Examples;
#DEFINE OLDDIR=$DEST\BIN\OLD
#DEFINE COMMAND=C:\4DOS\4DOS.EXE

The following examples are NOT allowed;
#DEFINE COPY=COPY *.* A:\
#DEFINE COMMAND=COMMAND.COM

#DEFINE COMM=C:\DOS\COMMAND.COM
This is because they represent an attempt to use the constants which are being
defined (or part of the constants' names) in the values assigned to the constants. This
will either lead to an almighty CRASH, or to unpredictable and random
results.

See also;
#CONST

#INCLUDE or $INCLUDE
This allows you to import the contents of another Chief's Installer Pro batch file into
the currently running batch file, at the place where the command was used. This is
the only way in which you can call a Chief's Installer Pro batch file from another one.
Note that while nested includes may sometimes work, they are NOT supported (i.e.,
please do not #INCLUDE a file into another one which was itself called with the
#INCLUDE command).

The Syntax is;
 #INCLUDE <filename>
EXAMPLE:

 #INCLUDE $TEMPDIR\PROG2.CHF

APPENDFILE
This is one of the text file commands. It adds a string to text to the end of a text
(ASCII) file. If the specified file does not exist, a new one is created.

The Syntax is;
 APPENDFILE <filename>;<string>
EXAMPLE:

 APPENDFILE C:\AUTOEXEC.BAT;SET TROOKTROG=C:\TROOKT

See also;
WRITETEXT

ATTRIB
Change and/or set the attributes bits of a file. Attribute bits can be concatenated
(separated with a semi-colon). The plus sign ("+") turns on an attribute bit, and the
minus sign ("-") turns it off. In this respect, "R" = read only; "S" = system file; "A" =
archive; "H" = hidden.

The Syntax is;
 ATTRIB <filename>;<attr>[;other attrs]
EXAMPLE:

 ATTRIB $DEST\TROOK.CNF;+R;-H;-A;+S

BEEP
Make a beeping noise on the PC's speaker. This calls the Windows MessageBeep()
API function.

CD or CHDIR
Change to another directory.

The Syntax is;
 CD <new directory>
EXAMPLE:

 CD $DEST\BIN\SOURCE

See also;
MD
RD

COPY or CP
Copy a file (or a group of files) from one location to another. This command simply
copies the files (compressed files are not expanded).
This command takes two parameters - the source file and the target file/directory. If
the source file is a single file name (i.e., no wildcards) then the second parameter can
be a file name or a directory. If the source filename contains wildcards, the second
parameter MUST be a directory. Error codes are returned in ERRORCODE.

The Syntax is;
 COPY <source-file> [;] <dest-file>
EXAMPLE:

 COPY    $DEST\TROOK.*    $DEST\TROOK\BACKUP

See also;
EXPANDFILE

CREATEFILE
This creates a new file (with zero bytes). If any file of the same name already exists,
the existing file is overwritten. Please note this point. The only purpose of using this is
to ensure that a log of the file is kept in UNINSTAL.LOG so that the uninstaller can
delete it if necessary (i.e., if you are creating a new file on the system with batch
commands, you can call CREATEFILE first, and then use any other command (e.g.,
APPENDFILE, or WRITETEXT).

The Syntax is;
 CREATEFILE <filename>
EXAMPLE:

 CREATEFILE $DEST\TROOK\TROOK.CFG

See also;
APPENDFILE
WRITETEXT

DEL or RM
Delete a file or a group of files. Note that while wildcards are allowed, the wildcard
"*.*" will NOT be accepted. The user will get a hard-coded error message in English.

The Syntax is;
 DEL <filename>
EXAMPLES:

 DEL $TEMPDIR*.$$$
 DEL $DEST\MYFILE.BAK

DELAY
Pause for some time. This command takes one parameter - the number of SECONDS
to wait for. If no parameter is supplied, there will be a pause for one second.

The Syntax is;
 DELAY <seconds>
EXAMPLE:

 DELAY 5

DISPLAY
Shows a modal dialog box in which you can display some text (e.g., while doing some
other stuff in the background). This command takes one parameter - either the text to
be displayed in the dialog, or OFF (to turn off the display dialog). Note that the display
dialog does not have any buttons, and has to be removed by "DISPLAY OFF".

The Syntax is;
 DISPLAY <message>
 or
 DISPLAY OFF
EXAMPLE:

 DISPLAY I am now processing files \n \n Please wait ...

EXEC or RUN
Run a program. Processing of the batch file continues as soon as the program is
executed.

The Syntax is;
 EXEC <program> [program parameters]
EXAMPLE:

 EXEC NOTEPAD.EXE $DEST\README.TXT

See also;
EXECHIDDEN
EXECWAIT

EXECHIDDEN or RUNHIDDEN
Run a program, with it's main window hidden. Processing of the batch file continues as
soon as the program is executed. Note that the program to be executed must be self-
terminating, since your user will have no way of terminating it. It will NOT show up in
the task list. This command is useful for running something (like a time-stamping
program) behind the scenes.

The Syntax is;
 EXECHIDDEN <program> [parameters]
EXAMPLE:

 EXECHIDDEN $DEST\CONFIG.EXE /NewInstall

See also;
EXEC
EXECWAIT

EXECWAIT
Run a program. Processing of the batch file will stop until the program is closed. This
will fail if used to run DOS sessions under OS/2 (i.e., processing will continue
immediately - just like the EXEC command).

The Syntax is;
 EXECWAIT <program> [parameters]
EXAMPLE:

 EXECWAIT NOTEPAD.EXE $TEMPDIR\README.NOW

See also;
EXEC
EXECHIDDEN

EXIT or RETURN
Exit from the currently running batch file. The installer goes to the next stage. This
command takes no parameter.

See also;
HALT

EXITWINDOWS
This command takes no parameter. If it is used, then Windows will be closed down
immediately, without giving the user any say in the matter. Note that this command
uses the EXITWINDOWS() API call. Thus it will fail if any program refuses to
terminate (e.g., if the user has a DOS session open).

See also;
EXITWINDOWSEXEC

EXITWINDOWSEXEC
Shut down Windows, run a DOS program, and then restart Windows again. This
command takes one parameter - the name of the DOS program to be executed. It is
NOT recommended to use this command at all, since if it is used that is really the end
of your installation - Windows will restart, and just return the user to whatever
happens to be the Windows shell.
Note that this command uses the EXITWINDOWSEXEC() API call. Thus it will fail if
any program refuses to terminate (e.g., if the user has a DOS session open).

See also;
EXITWINDOWS

EXPANDFILE or LZEXPAND
Copy a file (or a group of files) from one location to another. If a file is compressed
(with Microsoft's COMPRESS.EXE) the file will be expanded (using the functions in
LZEXPAND.DLL).
This command takes two parameters - the source file and the target file/directory. If
the source file is a single file name (i.e., no wildcards) then the second parameter can
be a file name or a directory. If the source filename contains wildcards, the second
parameter MUST be a directory. Error codes are returned in ERRORCODE.

The Syntax is;
 EXPANDFILE <source-file> [;] <dest-file>
EXAMPLE:

 EXPANDFILE $DEST\WORK\TROOK.C?? $DEST\TROOK

See also;
COPY

FOR
This is the FOR loop. It runs a specified command for each file in a set of files.

The Syntax is;
 FOR %variable IN (set) DO command [command-parameters]
EXAMPLE:

 FOR %i IN ($DEST*.TXT) DO NOTEPAD.EXE %i

GOTO
Jump to a pre-defined label in the batch file. Labels, when defined, must begin with a
colon (":") followed immediately with the label's name. When using GOTO, you must
not include the colon. Processing continues after coming to the end of the label,
unless the end of the label contains a jump to another label (with GOTO).

The Syntax is;
 GOTO <label>
EXAMPLE:

 GOTO END

HALT
Terminate the installation. This not only exits the batch file currently running, it also
closes down the installer itself. Use with care!!!

See also;
EXIT

IF CHOICE
This command allows the user to choose any one out of up to 10 predefined options (a
radio button will be presented for each option). The options are a series of strings,
separated by semi-colons (and numbered automatically), the last of which will be the
text prompting for the choices. If any of the buttons is checked, and the user clicks on
"OK" the condition returns TRUE, the number of the selected option will be returned in
CHOICE, and the command attached to the condition will be executed (see the sample
batch file SETUP.CHF for an example of this being used to ask for the user's
language).

The Syntax is;
 IF CHOICE "<choices;prompt>" <command> [CHOICE]
EXAMPLE:

 IF CHOICE "Mono;Colour;Please choose your monitor type" GOTO CHOICE
 IF CHOICE "AMD;Intel;Cyrix;Select your CPU vendor" COPY CHOICE.CPU $DEST

IF CONFIRM
This allows you to prompt the user for a YES or NO. It presents a message box with a
question (posed by you) and if the user clicks on YES, then the condition returns TRUE
and the attached command is executed. If the user clicks on NO, then the condition
returns FALSE and the attached command is ignored.

The Syntax is;
 IF CONFIRM "<question>" <command>
EXAMPLE:

 IF CONFIRM "Should I abort the install?" HALT

See also;
IF NOT-CONFIRM

IF CPU
This allows you to test for the microprocessor (CPU) inside the user's PC, without any
input from the user. If the user's CPU is the one specified by you, then the condition
returns TRUE. Possible CPU values are 80386, 80486, or P5

The Syntax is;
 IF CPU <cpu-value> <command>
EXAMPLE:

 IF CPU P5 Say you have a Pentium processor!

See also;
IF HAS-FPU

IF DISKFREE
This allows you to test for the amount of free disk space on the current drive. This
takes an operator as the first parameter, and the size you are testing for, as the
second parameter. For the operator, you can use either the "greater than" (">") or the
"less than" ("<") symbols. Whether the condition returns TRUE or not depends on the
operator used. The "size" parameter should be a whole number, in bytes.

The Syntax is;
 IF DISKFREE <operator> <size> <command>
EXAMPLES:

 IF DISKFREE > 1024 SAY Free Space is Greater than 1kb!
 IF DISKFREE < 2048000 GOTO ABORT

IF ERRORCODE
The result of every batch operation is returned in an internal variable called
ERRORCODE. This is so that you can receive some (rudimentary) feedback on each
command (since you will not receive any error message if a command fails). You can
test for the value of ERRORCODE after every command.
Possible ERRORCODE values;

[a]    0    = operation successful; no error
[b]    1 = syntax error; the command was not executed at all
[c] -1 = some processing error or the other; this is what to watch for!

The Syntax is;
 IF ERRORCODE <code> <command>
EXAMPLE:

 IF ERRORCODE -1 SAY The last command failed!

See also;
IF NOT-ERRORCODE

IF EXIST
Test for whether a file exists. If the file exists, the condition is TRUE and the attached
command is executed.

The Syntax is;
 IF EXIST <filename> <command>
EXAMPLE:

 IF EXIST C:\AUTOEXEC.BAT APPENDFILE C:\AUTOEXEC.BAT LOADHIGH $DEST\
TROOK.SYS

See also;
IF NOT-EXIST

IF FSIZE
Tests whether the size of a file is exactly the same as the size you specify. If so, the
condition returns TRUE. The "size" parameter should be a whole number, in bytes.

The Syntax is;
 IF FSIZE <filename> <size> <command>
EXAMPLE:

 IF FSIZE $DEST\PROG.EXE 23494 GOTO SAFE

See also;
IF NOT-FSIZE

IF HAS-FPU
This does not require any input from the user. If the user's computer has got a Maths
Co-processor (a floating point chip), the condition returns TRUE, and the attached
command is executed. It returns FALSE if there is no maths co-processor.

The Syntax is;
 IF HAS-FPU <command>
EXAMPLE:

 IF HAS-FPU SAY You have a Maths Chip!

See also;
IF CPU

IF INPUT
This presents an input dialog to the user, where the user can enter some text, in
answer to a prompt. If text is entered and the user clicks on "OK" then the condition
returns TRUE. The text entered by the user is returned in a variable called INPUT,
which you can use on the same line only.
In another permutation, you can also check for the text that was entered, by using the
"==" operator.

The Syntax is;
 IF INPUT "<prompt>" <command> [INPUT]
 or
 IF INPUT "<prompt>" == <string> <command> [INPUT]
EXAMPLES:

 IF INPUT "Please enter your TROOK filename" NOTEPAD.EXE INPUT
 IF INPUT "Your ID., please:" == FRED GOTO CONTINUE

IF ISDIRECTORY
Tests for the existence of a directory.

The Syntax is;
 IF ISDIRECTORY <directory-name> <command>
EXAMPLE:

 IF ISDIRECTORY C:\DRAG CD C:\DRAG

See also;
IF NOT-ISDIRECTORY

IF NOT-CONFIRM
This allows you to prompt the user for a YES or NO. It presents a message box with a
question (posed by you) and if the user clicks on NO, then the condition returns TRUE
and the attached command is executed. If the user clicks on YES, then the condition
returns FALSE and the attached command is ignored.

The Syntax is;
 IF NOT-CONFIRM "<question>" <command>
EXAMPLE:

 IF NOT-CONFIRM "Should I abort the install?" GOTO CONTINUE

See also;
IF CONFIRM

IF NOT-ERRORCODE
Allows you to test for the value of ERRORCODE after each batch operation. See the IF
ERRORCODE command for full description.

The Syntax is;
 IF NOT-ERRORCODE <code> <command>
EXAMPLE:

 IF NOT-ERRORCODE 0 SAY An error has occured!

See also;
IF ERRORCODE

IF NOT-EXIST
Tests for the existence of a file. It returns TRUE if the specified file does NOT exist.

The Syntax is;
 IF NOT-EXIST <filename> <command>
EXAMPLE:

 IF NOT-EXIST TRAGG.CNF CREATEFILE TRAGG.CNF

See also;
IF EXIST

IF NOT-FSIZE
Tests for the size of a file. If the file's size does not exactly match the specified size,
the condition returns TRUE.

The Syntax is;
 IF NOT-FSIZE <filename> <size> <command>
EXAMPLE:

 IF NOT-FSIZE PROG.EXE 53333 SAY This file may have a VIRUS!!!

See also;
IF NOT-FSIZE

IF NOT-ISDIRECTORY
Tests for the existence of a directory. Returns TRUE if the directory does NOT exist.

The Syntax is;
 IF NOT-ISDIRECTORY <directory-name> <command>
EXAMPLE:

 IF NOT-ISDIRECTORY $DEST\BAK MD $DEST\BAK

See also;
IF ISDIRECTORY

IF SLANGUAGE
Tests for the value of the "sLANGUAGE" setting in the "INTL" section of the WIN.INI file.
If there is an entry, the condition returns TRUE and the value in that setting is
returned in an internal variable called SLANGUAGE which can be used on the same
line.

The Syntax is;
 IF SLANGUAGE [== STRING] <command> [SLANGUAGE]
EXAMPLES:

 IF SLANGUAGE GOTO SLANGUAGE
 IF SLANGUAGE == ENG SAY Your Windows speaks English!

IF VMODE
Allows you to test for the user's display driver mode, without any input from the user.
Possible values are CGA, EGA, VGA, SVGA, or SSVGA. The first three speak for
themselves. "SVGA" stands for 800*600 and "SSVGA" stands for 1024*768, or higher
screen resolutions.

The Syntax is;
 IF VMODE <value> <command>
EXAMPLE:

 IF VMODE SVGA SAY Your display is 800 * 600

IF WINVER
Allows you to test for the version of Windows which the user is running. There are a
number of ways to test for Windows versions (see the sample batch file
CHIEFPRO.CHF for details), but the numeric method (1 to 11 - starting from Windows
3.0 to Windows NT) may be the easiest.

1    = Windows Version 3.00
2    = Windows Version 3.10 (no network)
3    = Windows for Workgroups 3.10 (networked)
4    = Windows Version 3.10 (with Win32s, no network)
5    = Windows for Workgroups 3.10 (with Win32s, networked)
6    = Windows Version 3.11 (no network)
7    = Windows for Workgroups Version 3.11 (networked)
8    = Windows Version 3.11 with Win32s
9    = Windows for Workgroups 3.11 (with Win32s, networked)
10 = Windows 95
11 = Windows NT

The Syntax is;
 IF WINVER <code> <command>
EXAMPLE:

 IF WINVER 10 SAY You are running Windows 95

LOADCTL3D
Loads CTL3DV2.DLL or CTL3D.DLL (in that order of preference), if either of them is
found on the system. For each call to this command, there must be a corresponding
call to UNLOADCTL3D.

See also;
UNLOADCTL3D

MD or MKDIR
Creates a directory.

The Syntax is;
 MD <directory name>
EXAMPLE:

 MD $DEST\TRRUTT

See also;
RD
RD

RD or RMDIR
Removes a directory.

The Syntax is;
 RD    <directory name>
EXAMPLE:

 RD $DEST\TRRUTT

See also;
CD
MD

REN or MV
Renames a file. This command takes two parameters - the old name of the file, and
the new name of the file. Please note that you cannot rename a file across drives -
and that it is preferable to supply the full pathnames for the files.

The Syntax is;
 REN <old-name> <new-name>
EXAMPLE:

 REN $DEST\FRED.TAR $DEST\FRED.GZ

SAY or ECHO
Displays a message in a standard Windows message box.

The Syntax is;
 SAY <message>
EXAMPLE:

 SAY Hello World!

UNLOADCTL3D
Unloads CTL3DV2.DLL or CTL3D.DLL (if it had been loaded with the LOADCTL3D
command). Please do not use this command unless you have previously used the
LOADCTL3D command. This command takes no parameter.

See also;
LOADCTL3D

UNZIP
UNZIPs a ZIP archive. The parameter are the same as those taken by the $UNZIP
reserved word. Please check the documentation on $UNZIP.

The Syntax is;
 UNZIP <zip-file>;<dest directory>;<code>

See also;
$UNZIP

WRITEBAT
Writes an entry into a Chief's Installer Pro batch file (at run-time) This takes 2
parameters, separated by a semi-colon - the name of the batch file to write into, and
the string to write into the batch file. The file will be written to (transparently) in the
appropriate format (i.e., compiled or ASCII), so it does not matter whether the file has
been compiled or not.

The Syntax is;
 WRITEBAT;<batch file>;<string>
EXAMPLE:

 WRITEBAT $DEST\REG.CHF;SAY You are not registered!

See also;
WRITEINF

WRITEINI
Writes an entry into an INI file. This takes the same parameters as the $INI reserved
word, except that (unlike $INI) it cannot take a USER-OPTION as a parameter. Please
see the documentation on that reserved word.

See also;
$INI

WRITEINF
Writes an entry into a Chief's Installer Pro INF file (at run-time) This takes 2
parameters, separated by a semi-colon - the name of the INF file to write into, and the
string to write into the INF file. The file will be written to (transparently) in the
appropriate format (i.e., compiled or ASCII), so it does not matter whether the file has
been compiled or not.

The Syntax is;
 WRITEINF;<INF file>;<string>
EXAMPLE:

 WRITEINF $TEMPDIR\WINSTALL.INF;$CLEANUP=$DEST*.CHF

See also;
WRITEBAT

WRITETEXT
Writes a string into a text (ASCII) file. This command takes three parameters - the
name of the text file to write to; the line number to write to (or "last" to append to the
file); and the string to write into the file.

The Syntax is;
 WRITETEXT <filename>;<line number>;<string>
EXAMPLES:

 WRITETEXT $DEST\TTT.TXT;1;This is the first line
 WRITETEXT $DEST\TTT.TXT;LAST;This is the last line

See also;
APPENDFILE

COMMAND LINE OPERATION
Chief's Installer Pro normally operates in an interactive way. When the program
INSTALL.EXE is run, a dialog box will be presented to the user, from where the user
can select options, click on a button to start the installation, etc. While this is
sufficient in most cases, there are situations in which you might want to use your own
"pre-installer" (e.g., instead of my own SETUP.EXE or for any other purpose). Note
that this option is not open to you if you are using SETUP.EXE.
For such situations, Chief's Installer Pro provides you with the flexibility of running
INSTALL.EXE with command line parameters. There are three types of parameters
that the program can take, and you can use one, or all, or some, or none of them, in
any combination.
The first is /$TARGET=<target directory>. When this parameter is used, Chief's
Installer Pro will assume that all the options which you have enabled in your INF file
have been accepted, and will by-pass the first dialog - the installation will start
straight away, without the user having the opportunity to select or unselect any of the
options manually. This is useful if you want to ensure that the installation is carried out
in a particular way (e.g., to ensure a standard setup on all computers in your
company). If you are using this parameter, it should be the first one that is supplied.
Another parameter you can supply is the name of the INF file to use for the
installation. Chief's Installer Pro defaults to WINSTALL.INF. You can however specify
another file name for this purpose. If this is used, it should be the first parameter (if
the /$TARGET= parameter is not used) or the second parameter (if /$TARGET= is
used). This parameter will be taken as paramstr(1) or argv[1], because INSTALL.EXE
does not include the /$TARGET= switch in the count of command line parameters.
The final parameter which you can supply is the source directory. You cannot use
this parameter without using the one which specifies the name of the INF file. If this
parameter is used, it should be the last one. If you specify an INF file, it is advisable to
also use this parameter to specify the source directory for the installation. This
parameter will be taken as paramstr(2) or argv[2].
Note that when you choose to run Chief's Installer Pro in this way, the program will
faithfully do whatever you say, and will not necessarily verify any of these
parameters. This option is provided for added flexibility - but if you use it, you are on
your own, and it us up to you to make sure that your program does all the necessary
authentification of the parameters you are passing.
In my opinion, it is far better to run Chief's Installer Pro in the normal way, but to allow
the installer to click on the "START INSTALL" button automatically, by using the
$AUTO-CLICK-BUTTON reserved word (with a parameter of 1). That way, all the
normal internal checks would have been carried out, and you would be able to use
SETUP.EXE.

The Syntax is;
 INSTALL.EXE [/$target=<target dir>] [<INF filename> <source dir>]
EXAMPLES:

 INSTALL.EXE /$target=C:\CHIEFPRO
 INSTALL.EXE /$target=C:\CHIEFPRO C:\TEMP\CHIEF.INF
 INSTALL.EXE /$target=C:\CHIEFPRO C:\TEMP\CHIEF.INF A:\
 INSTALL.EXE A:\CHIEF2.INF
 INSTALL.EXE B:\CHIEF2.INF B:\

See also;
$AUTO-CLICK-BUTTON

THE UNINSTALLER
Many Windows programs are easy to install, but most are not so easy tp remove,
because of INI files and DLLs thrown all over the place. Users who wish to uninstall
their programs face a hazardous task in which they may delete the wrong files, or
remove the wrong entries in INI files. This may then make Windows unusable,
necessitating an expensive re-install of Windows.
What this means is that many Windows users are reluctant to try out new programs
on their systems because of hassles of removing the programs if they don't want
them any more. This may mean that people will never ever get to see your
wonderful program    :). Some other people have to spend a lot of money on
commercial uninstallers, which attempt to snoop round the system. The fact that they
are trying to undo someone else's work means that this is often a hit-or-miss affair -
sometimes leading to an expensive program not getting the job done properly. Enter
the UNINSTALLER!.
Chief's Installer Pro includes an "uninstall" program (UNINSTAL.EXE). Which will undo
anything that Chief's Installer Pro did. If you used the $MAKE-UNINSTALL-LOG
reserved word in your WINSTALL.INF file, Chief's Installer Pro will create a log file
called UNINSTAL.LOG in the target directory. This file contains details of every
change made to the system by Chief's Installer Pro.
The user can subsequently "uninstall" your program by running UNINSTAL.EXE. The
uninstall program will read the log file UNINSTAL.LOG and use its contents to undo
everything it did during the installation. This includes deleting the installed files, any
directories created by Chief's Installer Pro, any Program Manager groups or icons
created by Chief's Installer Pro, any entries made into INI files by Chief's Installer Pro,
etc.
Having an uninstaller is one of the requirements for the Windows 95 logo!!!
Note that, unless the INI files are in your program's home directory, the INI files
themselves will NOT be deleted. Only the entries made into them by Chief's Installer
Pro will be deleted. This might result in "orphan" INI files - i.e., INI files with nothing
inside them. I believe that this is preferable to deleting all the INI files themselves.
This is because entries could have been made into existing INI files, and deleting such
files will be disastrous. Therefore, I leave it to users to delete any orphan INI files
manually    ("better safe than sorry" is the motto here - and, also, "beware Murphy's
law").
Shared files (DLL, VBX, and DRV files) installed into the Windows or Windows SYSTEM
directory are a special case. If a copy of such files already existed when the
installation was running, no log will be made of them, and the uninstaller will NOT
delete them (this is because they were obviously not put there by the installer). In
cases where no copy of the file was found at install time, the file will be logged, and
the uninstaller will delete it - but after asking the user for confirmation. This is
because although the file was put there by the installer, it may (after the user has
installed other programs) by needed by other programs. This is very often the case
with Visual Basic applications, and applications which use BWCC.DLL and/or
CTL3Dxx.DLL.
I believe that the uninstaller is a good marketing point for your program. First, there is
the perception that a person who provides an uninstaller with his program must be
very confident about the program itself. Also, users have nothing to lose by trying
your program, since removing it is simply a matter of clicking on the icon for the
uninstaller, and then supplying the home directory of the program to be uninstalled. If

the uninstaller does not find the log file in that directory, it aborts with an error
message. If the file is found, the user is given ONE opportunity to confirm that he or
she does really want to uninstall the program.
The Uninstaller can take optional parameters. The first is the home directory of the
program to be uninstalled. This means that you can pass your program's directory
($DEST) as a parameter to UNINSTAL.EXE when you are creating your program's
icons with the $ICON command.
e.g: $ICON=$DEST\UNINSTAL.EXE $DEST;Uninstall my Program!
The second parameter that the uninstaller can take is the name of the LOG file to use
for the uninstall. This parameter is normally optional (the program will default to
UNINSTAL.LOG). But note that if a filename was supplied as a parameter to the
$MAKE-UNINSTAL-LOG reserved word, then this parameter becomes MANDATORY
here (i.e., you must supply that filename as a second parameter to UNINSTAL.EXE
when you create the icons with the $ICON reserved word). Please note this point.
e.g: $ICON=$DEST\UNINSTAL.EXE $DEST VER2.LOG;Uninstall my Program!

Support for non-English languages is provided for the uninstaller by the use of string
tables. These can be compiled into a DLL which must be called UNINST.DLL. If this
file is not found at run time (it must be in the same directory as UNINSTAL.EXE) then
the default English string table inside UNINSTAL.EXE will be used.
A copy of the English language version of the resource script (UNINST.RC) is provided
for you to translate to your chosen language. Please note that if you choose to create
your own translations and put them in the DLL, you are on your own.

The uninstaller will optionally uninstall the program in such a way that the deleted
files cannot be undeleted. To enable this feature, use the parameter OVERWRITE in
the $MAKE-UNINSTALL-LOG line. Note that when this is used, uninstalled files and
directories cannot be undeleted, no matter what is attempted. They are first deleted,
then they are overwritten by a 1 byte file, and then that file is deleted. Any such file
that can be undeleted (in most cases, no file can be undeleted) will only delete to a
file containing 1 byte (of garbage data). Therefore, it is not recommended that this
feature should be used. It is only there because of a specific request, and if you use it,
you are on your own.

See also;
$ICO
$ICON
$MAKE-UNINSTALL-LOG

CREDITS
 Many thanks to the following:
1. Claus Ziegler, ZieglerSoft, Denmark - a great Windows guru! Thanks for
everything, and for the Danish translations of the string tables.
2. Joachim Rehmet and Juergen Kneifel - for the German translations of the string
tables.
3. Drs. Bob Swart - for the Dutch translations of the string tables.
4. Gary W.Rohn - for sharing the source code to your FI program.
5. Agustin Cernuda - for the Spanish translations of the string tables.
6. Bimmer (Per Bakkendorff) - for the Norwegian and Swedish translations of the
string tables.
7. Antoine Desir and Claude Daneluzzo - for the French translations of the string
tables.
8. Frederico Berrino - for the Italian translations of the string tables.
9. Dr Abimbola Olowofoyeku (The African Chief) - for the Yoruba translations of
the string tables.

DISCLAIMER
I do NOT warantee ANYTHING concerning any of the programs or files which make up
"Chief's Installer Pro for Windows". I accept NO RESPONSIBILITY for ANY LOSS OR
DAMAGE of ANY kind, including, but not limited to, losses of a physical, mental, social,
financial, marital, or of whatever nature, resulting from the use, or the purported use
of Chief's Installer Pro for Windows", or any of the files in the package, for any purpose
whatsoever. I do not even warantee that the programs will not kill you. You use Chief's
Installer Pro for Windows ENTIRELY AT YOUR OWN RISK, and you supply it to your
customers, friends, family, acquaintances, or enemies, ENTIRELY AT YOUR OWN RISK.
If these terms are NOT acceptable to you, then you have no licence to use or test
Chief's Installer Pro, and you should DELETE all the program's files from all your disks
immediately AND PERMANENTLY.

FEEDBACK
Okay. I am keen to obtain feedback, especially from registered users. I also welcome
suggestions for features. I cannot promise to implement every suggestion, but at
least, I will consider the ideas. If you have any comments, ideas, suggestions, etc., or
you just want to tell me how wonderful the program is :)    then please feel free to
contact me by e-mail. I will try to respond if a response is appropriate.
You can contact me by e-mail at the following internet addresses:

 laa12@potter.cc.keele.ac.uk
 chief@mep.com

UPDATES
This program is being constantly updated. I will endeavour to release bug fixes as
often as I receive bug reports and fix them. However, it is rather difficult to spread the
word about new releases and updates. There are a number of internet ftp sites which
are not usually busy and to which I can therefore upload new versions. You might want
to check these places from time to time.

 FTP SITES (and directories)
 ftp.demon.co.uk    /pub/ibmpc/windows/chief/pro
 micros.hensa.ac.uk    /micros/ibmpc/win/e/e022

 COMPUSERVE
 WINSHARE LIB 4
 MSBASIC LIB 2

REGISTRATION
Chief's Installer Pro is distributed under the Shareware principle. It can be copied and
distributed freely, as long as ALL the supplied files, including documentation (this file)
are included, and NO ATTEMPT is made to modify any of the files.
The Shareware principle means that you get a chance to EVALUATE the program free
of charge for a reasonable period of time (in the case of Chief's Installer Pro, a
maximum of 14 days). It does not mean that you will NOT have to pay for the
program.
This program is NOT crippled in any way, and you only get nagged when you use the
(optional) Chief's Installer Pro compiler. What this means is that you now have the
FULL version of Chief's Installer Pro. Nothing is disabled, there are no extra files, and
there is no written manual. All the documentation is in the .HLP file (CHIEF.HLP) and
the .WRI file (CHIEF.WRI).
I felt that releasing the full version in this way was necessary in order to enable
people to fully evaluate the program, being that they will be seeing exactly what the
program is. It also helps to ensure that when you do register, you do not have to wait
for days or weeks to receive your "registered copy".
However, this approach also means that I am relying totally on people's honesty to
register. Chief's Installer Pro is a tool to help programmers concentrate on their
products by not having to worry about installation routines, thereby improving their
productivity. A lot of time and effort has gone into this program, and I am not asking
for much, considering that users will be getting a royalty-free license, which covers all
their Windows applications! If you find Chief's Installer Pro useful and would like to
continue using it, or you would like to use it as the installation routine for your own
programs, then I would encourage you to please REGISTER your copy.

 BENEFITS OF REGISTRATION
1. You will receive a serial number and a registration code which will remove the
nags from the compiled INF and batch files, and which will entitle you to a upgrades
to future shareware releases of Chief's Installer Pro, up till (but not including) the
next MAJOR release. MAJOR upgrades will be numbered in whole numbers, and
attract an upgrade fee of 50% of whatever is the prevailing registration fee. Minor
upgrades will be numbered in .10 increments, and will be free.
2. Freedom to use Chief's Installer Pro as the installation program for an unlimited
number of your own applications.
3. A clear conscience.
4. Support (via e-mail) for the program.
5. A chance to have an input into the features of future versions (I will not accept
suggestions for new features from anyone who has not registered).
6. Not having to worry that I will discover that you have used the package as the
installation routine for your program without registering <g>
7. You will be very cool indeed.

REGISTRATION FEE:
£39.99        (U.K. STERLING)

$59.99        (U.S.)

$74.99    (Canadian)

$80.00        (Australian)

Kr359.99    (Danish)

Please NOTE that ALL prices are subject to change WITHOUT NOTICE.

Please NOTE also that the correct fee (including taxes/duties/charges where
appropriate) must be sent in all cases. If a necessary duty/tax is not sent, the order can
not be processed.

 I would also encourage registrants to please PRINT their registration requests
CLEARLY.
We have in the past received several registration requests that were not legible, especially
the e-mail addresses. This is especially important for low-grade faxes. If we cannot read your
details, then it also follows that we will neither be able to process your registration, nor even
to contact you to inform you of the problem.

See also;
REGISTRATION SITES

COMPUSERVE
AUSTRALIA, NEW ZEALAND, ASIA, THE FAR EAST
CANADA, USA
USA
EUROPE
UNITED KINGDOM, IRELAND, EUROPE, EVERYWHERE ELSE
CREDIT CARD ORDERS

REGISTRATION SITES
Below are the registration sites for Chief's Installer Pro. Please send your registration request
to the registration site that is most convenient for you. Some of the registration sites cannot
accept credit card orders. If you are paying by credit card please check carefully that the
registration site you are dealing with can accept payment by credit card.

YOU CAN SEND THE REGISTRATION FEE TO ANY OF THE FOLLOWING REGISTRATION
SITES;

COMPUSERVE
AUSTRALIA, NEW ZEALAND, ASIA, THE FAR EAST
CANADA, USA
USA
EUROPE
UNITED KINGDOM, IRELAND, EUROPE, EVERYWHERE ELSE
CREDIT CARD ORDERS

Please fill the REGISTRATION FORM below.

REGISTRATION FORM

COMPUSERVE
On-line registration is available under the SWREG scheme. If you GO SWREG, the
Registration ID is 7557.

See also;
CREDIT CARD ORDERS

AUSTRALIA, NEW ZEALAND, ASIA, THE FAR EAST

 Please send orders from these areas to:

DAVID PERKOVIC
DP Computing
P.O.Box 712
Noarlunga Center
SA 5168
Australia

Internet: dpc@adam.com.au
dpc@mep.com

Tel:        +61 8 326 4364
Mobile: +61 015 973 503

Fee:    $80.00      (Australian funds)

NOTES:
1. Method of payment: Cheques, Money Orders
2. Make cheques/money orders payable to: "DP Computing".

CANADA, USA

 Please send orders from these areas to:

Minds Edge Productions Inc.
P. O. Box 211
3456 Dunbar Street
Vancouver, BC V6S 2C2
Canada

Internet: info@mep.com
Fidonet: 1:153/709
WWW: http://haven.uniserve.com/~shane/mep.html

Fee: $59.99 (US funds)
or:    $74.99 (Canadian funds)

NOTES:
1. Method of payment: Checks, Money Orders (U.S. or Canadian funds)
2. Make cheques/money orders payable to: "Minds Edge Productions Inc.".
3.    British Columbia residents should add 7% sales Tax.
4.    Canadian Residents should add 7% GST.

USA

 Please send orders from the USA to:

TODD MERRIMAN
Software Toolz, Inc.
8030 Pooles Mill Dr.
Ball Ground,
GA 30107
U.S.A.

Fax: 770-887-5960
Internet: software@toolz.atl.ga.us

Fee:    $59.99 (US funds)

NOTES:
1. Method of payment: Checks, Money Orders, Visa, Mastercard, American
Express.
2. Georgia residents should add the appropriate Sales Tax

See also;
CREDIT CARD ORDERS

EUROPE

 Please send orders from EUROPE to:

HENRIK MOERK
Survival BBS
P.O.Box 1538
DK-2700 Bronshoj
Denmark

Tel: +45 3 889 5253
FIDO:    2:231/306
Internet:    Eurovga@ibm.net

Fee:    Kr 359.99 (Danish funds)

NOTES:
1. Method of payment: Cheques, Eurocheques, Money Orders, VISA,
Mastercard/Eurocard, GIRO, Danish DANKORT, and JCB card
2. GIRO: 1-207-4247
3. Make cheques/money orders payable to: "HENRIK MOERK".
4. EC residents should add 25% VAT.

See also;
CREDIT CARD ORDERS

UNITED KINGDOM, IRELAND, EUROPE, EVERYWHERE
ELSE

 Please send orders from these areas to:

JOHN BARTON
57 Baddeley Green Lane
Baddeley Green
Stoke on Trent
Staffs, ST2 7JL
ENGLAND.

Internet:    laa12@keele.ac.uk
chief@mep.com

Compuserve: 100306,1334
Fee:    £39.99 (U.K. funds; or equivalent)

NOTES:
1. Method of payment: Cheques, Eurocheques, Money Orders
2. Make cheques/money orders payable to: "JOHN BARTON".
3. ADD: £5.00    (if sending a foreign cheque; note that foreign cheques that do not
contain this fee will not be processed)

CREDIT CARD ORDERS
Please note that of all these registration sites, the only ones which can process CREDIT
CARD orders are;

[a] Compuserve,
[b] Todd Merriman, and
[c] Henrik Moerk.

If you will not be registering on-line on Compuserve, please send all credit card orders either
to Todd Merriman, or Henrik Moerk.

NOTE: If you want to send your credit card orders to Todd Merriman by e-mail, please put
your details (as per the registration form) in an ASCII file, and then run the program
TOTOOLZ.EXE on the file. This will encrypt the contents of the file. You can then safely e-
mail the (encrypted) output file to Todd Merriman. This precaution is to protect your credit
card details from internet hackers.

See also;
REGISTRATION SITES

To register Chief's Installer Pro, please PRINT and FILL IN the following
Registration FORM.
NOTE: Please specify your CURRENT version of Chief's Installer Pro.

 TO:
__
__
__
__

 I wish to REGISTER my copy of "Chief's Installer Pro".

 My current version is        __________

 I am ordering      __________    copies

 I am paying the REGISTRATION FEE of                  __________

 ADD Tax (if applicable)  __________
(See info on the registration sites to see if they collect tax)

Total FEE:  ____________
I am paying by      Cheque/Money Order/Credit Card    (delete as inapproriate)

NAME                  ___
ADDRESS      ___

POST/ZIP CODE ___
E-MAIL                      ___

How did you get your copy of Chief's Installer Pro?
__

IF PAYING BY CREDIT CARD, PLEASE SEND THE FOLLOWING DETAILS;
(NOTE: Not all sites accept credit cards so please refer to the list of REGISTRATION SITES)

CARD ISSUER                      __
CARD NUMBER                      __
DATE OF ISSUE                  ___
EXPIRY DATE                      __
SIGNATURE                          ___
DATE                                    __

 PLEASE REMEMBER TO SIGN THE CREDIT CARD ORDER!

TECHNICAL SUPPORT
1. Technical support can only be provided for people who HAVE registered.
Please note therefore that no support can be provided for anyone who has not
registered (not even if you promise me that "the cheque is in the post"), and that I
can answer no questions from anyone who has not registered. This is so that those
who have paid can get the support that they deserve and have paid for.
2. Please note also that NONE of my registration sites can provide technical
support. Therefore, customers are asked to please not telephone or fax any request
for technical support to any of my registration sites. Rather,    all requests for technical
support should be sent to Dr A Olowofoyeku (address below). The preferred medium
of communication is electronic mail.
3. Please read the CHIEF.FAQ file before sending requests for technical
support. The file might very well contain the answer to your query.
4. Please send requests for technical support by e-mail to:

[a] laa12@keele.ac.uk
OR,

[b] chief@mep.com

If you do not have e-mail facilities, then please send queries by post to:
Dr A A Olowofoyeku
268 Horwood
Newcastle
STAFFS,      ST5 5BQ
ENGLAND.

GOLD AWARD
Chief's Installer Pro was winner of the PC PLUS Magazine's GOLD AWARD (U.K.
edition, April 1995).

